Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(3): e0181922, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36877040

RESUMEN

The rhizosphere is the region of soil directly influenced by plant roots. The microbial community in the rhizosphere includes fungi, protists, and bacteria: all play significant roles in plant health. The beneficial bacterium Sinorhizobium meliloti infects growing root hairs on nitrogen-starved leguminous plants. Infection leads to the formation of a root nodule, where S. meliloti converts atmospheric nitrogen to ammonia, a bioavailable form. In soil, S. meliloti is often found in biofilms and travels slowly along the roots, leaving developing root hairs at the growing root tips uninfected. Soil protists are an important component of the rhizosphere system, able to travel quickly along roots and water films, who prey on soil bacteria and have been known to egest undigested phagosomes. We show that a soil protist, Colpoda sp., can transport S. meliloti down Medicago truncatula roots. Using model soil microcosms, we directly observed fluorescently labeled S. meliloti along M. truncatula roots and tracked the displacement of the fluorescence signal over time. Two weeks after co-inoculation, this signal extended 52 mm farther down plant roots when Colpoda sp. was also present versus treatments that contained bacteria but not protists. Direct counts also showed protists are required for viable bacteria to reach the deeper sections of our microcosms. Facilitating bacterial transport may be an important mechanism whereby soil protists promote plant health. IMPORTANCE Soil protists are an important part of the microbial community in the rhizosphere. Plants grown with protists fare better than plants grown without protists. Mechanisms through which protists support plant health include nutrient cycling, alteration of the bacterial community through selective feeding, and consumption of plant pathogens. Here, we provide data in support of an additional mechanism: protists act as transport vehicles for bacteria in soil. We show that protist-facilitated transport can deliver plant-beneficial bacteria to the growing tips of roots that may otherwise be sparsely inhabited with bacteria originating from a seed-associated inoculum. By co-inoculating Medicago truncatula roots with both S. meliloti, a nitrogen-fixing legume symbiont, and Colpoda sp., a ciliated protist, we show substantial and statistically significant transport with depth and breadth of bacteria-associated fluorescence as well as transport of viable bacteria. Co-inoculation with shelf-stable encysted soil protists may be employed as a sustainable agriculture biotechnology to better distribute beneficial bacteria and enhance the performance of inoculants.


Asunto(s)
Bacterias , Cilióforos , Medicago truncatula , Raíces de Plantas , Rizosfera , Bacterias/metabolismo , Medicago truncatula/microbiología , Medicago truncatula/parasitología , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Sinorhizobium meliloti/fisiología , Suelo/parasitología , Simbiosis , Cilióforos/metabolismo
2.
J Card Fail ; 29(7): 1017-1028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36706977

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is life-threatening, and often diagnosed late in its course. We aimed to evaluate if a deep learning approach using electrocardiogram (ECG) data alone can detect PH and clinically important subtypes. We asked: does an automated deep learning approach to ECG interpretation detect PH and its clinically important subtypes? METHODS AND RESULTS: Adults with right heart catheterization or an echocardiogram within 90 days of an ECG at the University of California, San Francisco (2012-2019) were retrospectively identified as PH or non-PH. A deep convolutional neural network was trained on patients' 12-lead ECG voltage data. Patients were divided into training, development, and test sets in a ratio of 7:1:2. Overall, 5016 PH and 19,454 patients without PH were used in the study. The mean age at the time of ECG was 62.29 ± 17.58 years and 49.88% were female. The mean interval between ECG and right heart catheterization or echocardiogram was 3.66 and 2.23 days for patients with PH and patients without PH, respectively. In the test dataset, the model achieved an area under the receiver operating characteristic curve, sensitivity, and specificity, respectively of 0.89, 0.79, and 0.84 to detect PH; 0.91, 0.83, and 0.84 to detect precapillary PH; 0.88, 0.81, and 0.81 to detect pulmonary arterial hypertension, and 0.80, 0.73, and 0.76 to detect group 3 PH. We additionally applied the trained model on ECGs from participants in the test dataset that were obtained from up to 2 years before diagnosis of PH; the area under the receiver operating characteristic curve was 0.79 or greater. CONCLUSIONS: A deep learning ECG algorithm can detect PH and PH subtypes around the time of diagnosis and can detect PH using ECGs that were done up to 2 years before right heart catheterization/echocardiogram diagnosis. This approach has the potential to decrease diagnostic delays in PH.


Asunto(s)
Aprendizaje Profundo , Insuficiencia Cardíaca , Hipertensión Pulmonar , Adulto , Humanos , Femenino , Masculino , Hipertensión Pulmonar/diagnóstico , Estudios Retrospectivos , Electrocardiografía/métodos
3.
Anaerobe ; 67: 102302, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33271360

RESUMEN

Members of Dysgonomonas are Gram-stain-negative, non-motile, facultatively anaerobic coccobacilli originally described in relation to their isolation from stool and wounds of human patients (CDC group DF-3). More recently, Dysgonomonas have been found to be widely distributed in terrestrial environments and are particularly enriched in insect systems. Their prevalence in xylophagous insects such as termites and wood-feeding cockroaches, as well as in soil-fed microbial fuel cells, elicit interest in lignocellulose degradation and biofuel production, respectively. Their occurrence in mosquito and fruit fly have implications relating to symbiosis, host immunology and developmental biology. Additionally, their presence in termite, mosquito and nematode present novel opportunities for pest and vector control. Currently, the absolute growth requirements of Dysgonomonas are unknown, and they are commonly cultured under anaerobic conditions on complex media containing blood, peptones, tryptones, and yeast, plant or meat extracts. Restrictive and undefined culturing conditions preclude physiological and genetic studies, and thus further understanding of their metabolic potential. Here we describe the requirements for growth of termite-derived Dysgonomonas isolates and create parallel complex, defined and minimal media that permit vigorous and reliable aerobic growth. Furthermore, we show that these media can be used to easily enrich for Dysgonomonas isolates from densely-colonized and microbially-diverse environmental samples.


Asunto(s)
Medios de Cultivo , Bacterias Anaerobias Gramnegativas/crecimiento & desarrollo , Isópteros/microbiología , Aminoácidos/metabolismo , Animales , Técnicas de Tipificación Bacteriana , ADN Bacteriano , Bacterias Anaerobias Gramnegativas/genética , Bacterias Anaerobias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/microbiología , Hemina/metabolismo , Hierro/metabolismo , Minerales/metabolismo , Nitrógeno/metabolismo , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Azufre/metabolismo , Vitaminas/metabolismo
4.
Heart Fail Rev ; 24(5): 759-777, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30903356

RESUMEN

Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/normas , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Ratas/fisiología , Ratas/cirugía , Animales , Humanos , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas/anatomía & histología , Reproducibilidad de los Resultados , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/fisiopatología
5.
Eur Heart J ; 38(18): 1365-1371, 2017 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-28073865

RESUMEN

Chronic cardiovascular diseases are significant health problems. Although current treatment strategies have tremendously improved disease management, up to 30% of these patients cannot be successfully treated with current treatment approaches and new treatment strategies are clearly needed. Gene therapy and therapeutic vascular growth may provide a new treatment option for these patients. Several growth factors, like vascular endothelial growth factors, fibroblast growth factors and hepatocyte growth factor have been tested in clinical trials. However, apart from demonstration of increased vascularity, very few results with clinical significance have been obtained. Problems with gene transfer efficiency, short duration of transgene expression, selection of endpoints, and suboptimal patients for gene therapy have been recognized. Ongoing gene therapy trials have included improvements in study protocols, vector delivery and endpoints, addressing the identified problems. Better, targeted delivery systems and new, more optimal growth factors have been taken to clinical testing. Recent advances in these areas will be discussed and the concept of angiogenic therapy as a sole treatment is re-evaluated. A combination with regenerative therapies or standard revascularization operations might be needed to improve tissue function and clinical benefits.


Asunto(s)
Inductores de la Angiogénesis/uso terapéutico , Enfermedades Cardiovasculares/terapia , Terapia Genética/métodos , Ensayos Clínicos como Asunto , Predicción , Técnicas de Transferencia de Gen , Vectores Genéticos , Insuficiencia Cardíaca/terapia , Humanos , Isquemia Miocárdica/terapia , Selección de Paciente , Enfermedades Vasculares Periféricas/terapia , Factores de Crecimiento Endotelial Vascular/genética
6.
J Extra Corpor Technol ; 50(3): 193-198, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30250349

RESUMEN

Cardiopulmonary bypass (CPB) featuring complete heart isolation and continuous cardiac perfusion is a very promising approach for solving the problem of efficient gene delivery. In the technique presented here, separate pumps are used for the systemic and cardiac circuits. This system permits continuous isolated arrested heart perfusion through optimizing a number of delivery parameters including temperature, flow rate, driving pressure, ionic composition, and exposure time to the cardiac vessels. During complete cardiac isolation, the blood vector concentration trended from 11.51 ± 1.73 log genome copies (GCs)/cm3 to 9.84 ± 1.65 log GC/cm3 (p > .05). Despite restructuring a very high concentration to the heart, GCs were detectable in the systemic circuit. These values over time were near negligible by comparison but detectable 1.66 ± .26 during 20 minutes of recirculation and did not change (p > .05). After the completion of the recirculation interval and subsequent washing procedure, the initial systemic blood vector GC concentration slightly increased to 2.08 ± .38 log GCs/cm3 (p > .05). During the recirculation period, we supported flow via the cardiac circuit around 300 mL/min. In this technique of heart isolation with continuous cardiac perfusion, >99% of the vector remains in coronary circulation during recirculation period. The animal's non recirculation blood, or that in the system, was routinely tested during and after recirculation to contain much less than 1% of the original dose obtained via logging concentration of therapeutic over time. All of the sheep in this group recovered from anesthesia and received critical postoperative care, including all organ function, in the first 24-36 hours. Twenty-one sheep (84%) survived to euthanasia at 12 weeks. Average CPB time was 107 ± 19.0 minutes and cross-clamp time was 49 ± 7.9 minutes. This technology readily provides multiple pass recirculation of genes through the heart with minimal side effects of collateral expression of other organs.


Asunto(s)
Puente Cardiopulmonar/métodos , Terapia Genética/métodos , Animales , Puente Cardiopulmonar/instrumentación , Diseño de Equipo , Reperfusión Miocárdica , Ovinos
7.
Harefuah ; 157(2): 112-116, 2018 Feb.
Artículo en Hebreo | MEDLINE | ID: mdl-29484868

RESUMEN

INTRODUCTION: Advances in understanding the molecular biology of heart failure, the evolution of vector technology, as well as defining the targets for therapeutic interventions has placed heart failure within the reach of gene-based therapy. During the last decade the concept of delivering cDNA encoding a therapeutic gene to failing cardiomyocytes has moved from hypothesis to the bench of preclinical applications and clinical trials. However, despite significant promise, several obstacles exist, which are described in this review. We anticipate that advances in the field will improve gene therapy in heart failure in future clinical approaches.


Asunto(s)
Terapia Genética , Insuficiencia Cardíaca/genética , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos
8.
Handb Exp Pharmacol ; 243: 395-421, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27796512

RESUMEN

Heart failure is a significant burden to the global healthcare system and represents an underserved market for new pharmacologic strategies, especially therapies which can address root cause myocyte dysfunction. Modern drugs, surgeries, and state-of-the-art interventions are costly and do not improve survival outcome measures. Gene therapy is an attractive strategy, whereby selected gene targets and their associated regulatory mechanisms can be permanently managed therapeutically in a single treatment. This in theory could be sustainable for the patient's life. Despite the promise, however, gene therapy has numerous challenges that must be addressed together as a treatment plan comprising these key elements: myocyte physiologic target validation, gene target manipulation strategy, vector selection for the correct level of manipulation, and carefully utilizing an efficient delivery route that can be implemented in the clinic to efficiently transfer the therapy within safety limits. This chapter summarizes the key developments in cardiac gene therapy from the perspective of understanding each of these components of the treatment plan. The latest pharmacologic gene targets, gene therapy vectors, delivery routes, and strategies are reviewed.


Asunto(s)
Terapia Genética/métodos , Insuficiencia Cardíaca/terapia , Adenilil Ciclasas/genética , Animales , Apoptosis/genética , Acoplamiento Excitación-Contracción/genética , Fibrosis/genética , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Humanos , Miocardio , Miofibrillas/genética , Receptores Adrenérgicos beta , Regeneración/genética , Transducción de Señal/genética
9.
Am J Physiol Heart Circ Physiol ; 310(5): H528-41, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26702142

RESUMEN

The mammalian heart has long been considered to be a postmitotic organ. It was thought that, in the postnatal period, the heart underwent a transition from hyperplasic growth (more cells) to hypertrophic growth (larger cells) due to the conversion of cardiomyocytes from a proliferative state to one of terminal differentiation. This hypothesis was gradually disproven, as data were published showing that the myocardium is a more dynamic tissue in which cardiomyocyte karyokinesis and cytokinesis produce new cells, leading to the hyperplasic regeneration of some of the muscle mass lost in various pathological processes. microRNAs have been shown to be critical regulators of cardiomyocyte differentiation and proliferation and may offer the novel opportunity of regenerative hyperplasic therapy. Here we summarize the relevant processes and recent progress regarding the functions of specific microRNAs in cardiac development and regeneration.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Regeneración , Animales , Diferenciación Celular , Proliferación Celular , Reprogramación Celular , Regulación del Desarrollo de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , MicroARNs/genética , Morfogénesis , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Transducción de Señal
10.
J Transl Med ; 12: 171, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24934216

RESUMEN

BACKGROUND: Cardiac gene therapy for heart disease is a major translational research area with potential, yet problems with safe and efficient gene transfer into cardiac muscle remain unresolved. Existing methodology to increase vector uptake include modifying the viral vector, non-viral particle encapsulation and or delivery with device systems. These advanced methods have made improvements, however fail to address the key problem of inflammation in the myocardium, which is known to reduce vector uptake and contribute to immunogenic adverse events. Here we propose an alternative method to co-deliver anti-inflammatory drugs in a controlled release polymer with gene product to improve therapeutic effects. METHODS: A robust, double emulsion production process was developed to encapsulate drugs into nanoparticles. Briefly in this proof of concept study, aspirin and prednisolone anti-inflammatory drugs were encapsulated in various poly-lactic glycolic acid polymer (PLGA) formulations. The resultant particle systems were characterized, co-delivered with GFP plasmid, and evaluated in harvested myocytes in culture for uptake. RESULTS: High quality nanoparticles were harvested from multiple production runs, with an average 64 ± 10 mg yield. Four distinct particle drug system combinations were characterized and evaluated in vitro: PLGA(50:50) Aspirin, PLGA(65:35) Prednisolone, PLGA(65:35) Aspirin and PLGA(50:50) Prednisolone Particles consisted of spherical shape with a narrow size distribution 265 ± 104 nm as found in scanning electron microscopy imaging. Prednisolone particles regardless of PLGA type were found on average ≈ 100 nm smaller than the aspirin types. All four groups demonstrated high zeta potential stability and re-constitution testing prior to in vitro. In vitro results demonstrated co uptake of GFP plasmid (green) and drug loaded particles (red) in culture with no incidence of toxicity. CONCLUSIONS: Nano formulated anti-inflammatories in combination with standalone gene product therapy may offer a clinical solution to maximize cardiac gene therapy product effects while minimizing the risk of the host response in the inflammatory myocardial environment.


Asunto(s)
Antiinflamatorios/administración & dosificación , Técnicas de Transferencia de Gen , Ácido Láctico/farmacología , Miocardio/metabolismo , Nanopartículas , Ácido Poliglicólico/farmacología , Animales , Animales Recién Nacidos , Antiinflamatorios/farmacología , Técnicas In Vitro , Ácido Láctico/química , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas
11.
Diagnostics (Basel) ; 14(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611631

RESUMEN

The current standard of care for coronary artery disease (CAD) requires an intake of radioactive or contrast enhancement dyes, radiation exposure, and stress and may take days to weeks for referral to gold-standard cardiac catheterization. The CAD diagnostic pathway would greatly benefit from a test to assess for CAD that enables the physician to rule it out at the point of care, thereby enabling the exploration of other diagnoses more rapidly. We sought to develop a test using machine learning to assess for CAD with a rule-out profile, using an easy-to-acquire signal (without stress/radiation) at the point of care. Given the historic disparate outcomes between sexes and urban/rural geographies in cardiology, we targeted equal performance across sexes in a geographically accessible test. Noninvasive photoplethysmogram and orthogonal voltage gradient signals were simultaneously acquired in a representative clinical population of subjects before invasive catheterization for those with CAD (gold-standard for the confirmation of CAD) and coronary computed tomographic angiography for those without CAD (excellent negative predictive value). Features were measured from the signal and used in machine learning to predict CAD status. The machine-learned algorithm achieved a sensitivity of 90% and specificity of 59%. The rule-out profile was maintained across both sexes, as well as all other relevant subgroups. A test to assess for CAD using machine learning on a noninvasive signal has been successfully developed, showing high performance and rule-out ability. Confirmation of the performance on a large clinical, blinded, enrollment-gated dataset is required before implementation of the test in clinical practice.

12.
Diagnostics (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732312

RESUMEN

Artificial intelligence, particularly machine learning, has gained prominence in medical research due to its potential to develop non-invasive diagnostics. Pulmonary hypertension presents a diagnostic challenge due to its heterogeneous nature and similarity in symptoms to other cardiovascular conditions. Here, we describe the development of a supervised machine learning model using non-invasive signals (orthogonal voltage gradient and photoplethysmographic) and a hand-crafted library of 3298 features. The developed model achieved a sensitivity of 87% and a specificity of 83%, with an overall Area Under the Receiver Operator Characteristic Curve (AUC-ROC) of 0.93. Subgroup analysis showed consistent performance across genders, age groups and classes of PH. Feature importance analysis revealed changes in metrics that measure conduction, repolarization and respiration as significant contributors to the model. The model demonstrates promising performance in identifying pulmonary hypertension, offering potential for early detection and intervention when embedded in a point-of-care diagnostic system.

13.
mBio ; 15(2): e0216923, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38236051

RESUMEN

Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is necessary and sufficient for exclusion by the SieA system and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants that overcome the SieA block were isolated, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single-amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in phage target specificity. Our data strongly suggest a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.IMPORTANCEThe ongoing evolutionary battle between bacteria and the viruses that infect them is a critical feature of bacterial ecology on Earth. Viruses can kill bacteria by infecting them. However, when their chromosomes are integrated into a bacterial genome as a prophage, viruses can also protect the host bacterium by expressing genes whose products defend against infection by other viruses. This defense property is called "superinfection exclusion." A significant fraction of bacteria harbor prophages that encode such protective systems, and there are many different molecular strategies by which superinfection exclusion is mediated. This report is the first to describe the mechanism by which bacteriophage P22 SieA superinfection exclusion protein protects its host bacterium from infection by other P22-like phages. The P22 prophage-encoded inner membrane SieA protein prevents infection by blocking transport of superinfecting phage DNA across the inner membrane during injection.


Asunto(s)
Bacteriófago P22 , Bacteriófagos , Sobreinfección , Humanos , Bacteriófago P22/genética , Bacteriófagos/genética , Profagos/genética , Profagos/metabolismo , Proteínas de la Membrana/metabolismo , ADN/metabolismo , Aminoácidos/metabolismo
14.
Diagnostics (Basel) ; 14(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786284

RESUMEN

Many clinical studies have shown wide performance variation in tests to identify coronary artery disease (CAD). Coronary computed tomography angiography (CCTA) has been identified as an effective rule-out test but is not widely available in the USA, particularly so in rural areas. Patients in rural areas are underserved in the healthcare system as compared to urban areas, rendering it a priority population to target with highly accessible diagnostics. We previously developed a machine-learned algorithm to identify the presence of CAD (defined by functional significance) in patients with symptoms without the use of radiation or stress. The algorithm requires 215 s temporally synchronized photoplethysmographic and orthogonal voltage gradient signals acquired at rest. The purpose of the present work is to validate the performance of the algorithm in a frozen state (i.e., no retraining) in a large, blinded dataset from the IDENTIFY trial. IDENTIFY is a multicenter, selectively blinded, non-randomized, prospective, repository study to acquire signals with paired metadata from subjects with symptoms indicative of CAD within seven days prior to either left heart catheterization or CCTA. The algorithm's sensitivity and specificity were validated using a set of unseen patient signals (n = 1816). Pre-specified endpoints were chosen to demonstrate a rule-out performance comparable to CCTA. The ROC-AUC in the validation set was 0.80 (95% CI: 0.78-0.82). This performance was maintained in both male and female subgroups. At the pre-specified cut point, the sensitivity was 0.85 (95% CI: 0.82-0.88), and the specificity was 0.58 (95% CI: 0.54-0.62), passing the pre-specified endpoints. Assuming a 4% disease prevalence, the NPV was 0.99. Algorithm performance is comparable to tertiary center testing using CCTA. Selection of a suitable cut-point results in the same sensitivity and specificity performance in females as in males. Therefore, a medical device embedding this algorithm may address an unmet need for a non-invasive, front-line point-of-care test for CAD (without any radiation or stress), thus offering significant benefits to the patient, physician, and healthcare system.

15.
Int J Cardiol ; 374: 95-99, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528138

RESUMEN

BACKGROUND: This study aimed to develop a machine learning (ML) model to identify patients who are likely to have pulmonary hypertension (PH), using a large patient-level US-based electronic health record (EHR) database. METHODS: A gradient boosting model, XGBoost, was developed using data from Optum's US-based de-identified EHR dataset (2007-2019). PH and disease control adult patients were identified using diagnostic, treatment and procedure codes and were randomly split into the training (90%) or test set (10%). Model features included patient demographics, physician visits, diagnoses, procedures, prescriptions, and laboratory test results. SHapley Additive exPlanations values were used to determine feature importance. RESULTS: We identified 11,279,478 control and 115,822 PH patients (mean age, respectively: 62 and 68 years, both 53% female). The final model used 165 features, with the most important predictive features including diagnosis of heart failure, shortness of breath and atrial fibrillation. The model predicted PH with an area under the receiver operating characteristic curve (AUROC) of 0.92. AUROC remained above 0.80 for the prediction of PH up to and beyond 18 months before diagnosis. Among the PH patients, we also identified 955 pulmonary arterial hypertension (PAH) and 1432 chronic thromboembolic pulmonary hypertension (CTEPH) patients, and the range of AUROCs obtained for these cohorts was 0.79-0.90 and 0.87-0.96, respectively. CONCLUSIONS: This model to detect PH based on patients' EHR records is viable and performs well in subgroups of PAH and CTEPH patients. This approach has the potential to improve patient outcomes by reducing diagnostic delay in PH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Adulto , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/epidemiología , Registros Electrónicos de Salud , Diagnóstico Tardío , Aprendizaje Automático , Hipertensión Pulmonar Primaria Familiar
16.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645741

RESUMEN

Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is the only phage protein required for exclusion by the SieA system, and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants were isolated that overcome the SieA block, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in target specificity. Our data are consistent with a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.

17.
NPJ Digit Med ; 5(1): 189, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550288

RESUMEN

Human bodily mechanisms and functions produce low-frequency vibrations. Our ability to perceive these vibrations is limited by our range of hearing. However, in-ear infrasonic hemodynography (IH) can measure low-frequency vibrations (<20 Hz) created by vital organs as an acoustic waveform. This is captured using a technology that can be embedded into wearable devices such as in-ear headphones. IH can acquire sound signals that travel within arteries, fluids, bones, and muscles in proximity to the ear canal, allowing for measurements of an individual's unique audiome. We describe the heart rate and heart rhythm results obtained in time-series analysis of the in-ear IH data taken simultaneously with ECG recordings in two dedicated clinical studies. We demonstrate a high correlation (r = 0.99) between IH and ECG acquired interbeat interval and heart rate measurements and show that IH can continuously monitor physiological changes in heart rate induced by various breathing exercises. We also show that IH can differentiate between atrial fibrillation and sinus rhythm with performance similar to ECG. The results represent a demonstration of IH capabilities to deliver accurate heart rate and heart rhythm measurements comparable to ECG, in a wearable form factor. The development of IH shows promise for monitoring acoustic imprints of the human body that will enable new real-time applications in cardiovascular health that are continuous and noninvasive.

18.
J Mol Cell Cardiol ; 50(5): 766-76, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20837022

RESUMEN

Existing methods of cardiac gene delivery can be classified by the site of injection, interventional approach and type of cardiac circulation at the time of transfer. General criteria to assess the efficacy of a given delivery method include: global versus regional myocardial transduction, technical complexity and the pathophysiological effects associated with its use, delivery-related collateral expression and the delivery-associated inflammatory and immune response. Direct gene delivery (intramyocardial, endocardial, epicardial) may be useful for therapeutic angiogenesis and for focal arrhythmia therapy but with gene expression which is primarily limited to regions in close proximity to the injection site. An often unappreciated limitation of these techniques is that they are frequently associated with substantial systemic vector delivery. Percutaneous infusion of vector into the coronary arteries is minimally invasive and allows for transgene delivery to the whole myocardium. Unfortunately, efficiency of intracoronary delivery is highly variable and the short residence time of vector within the coronary circulation and significant collateral organ expression limit its clinical potential. Surgical techniques, including the incorporation of cardiopulmonary bypass with isolated cardiac recirculation, represent novel delivery strategies that may potentially overcome these limitations; yet, these techniques are complex with inherent morbidity that must be thoroughly evaluated before safe translation into clinical practice. Characteristics of the optimal technique for gene delivery include low morbidity, increased myocardial transcapillary gradient, extended vector residence time in the coronary circulation and exclusion of residual vector from the systemic circulation after delivery to minimize extracardiac expression and to mitigate a cellular immune response. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".


Asunto(s)
Terapia Genética/métodos , Miocardio/metabolismo , Animales , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Humanos
19.
J Gene Med ; 13(10): 573-86, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21954055

RESUMEN

Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of ß-adrenergic receptor signaling, Ca(2+) handling proteins and angiogenesis in the most common extrinsic models of HF.


Asunto(s)
Terapia Genética/métodos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Corazón/fisiopatología , Animales , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Humanos , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/terapia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/fisiología
20.
J Card Fail ; 17(8): 691-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21807332

RESUMEN

BACKGROUND: Two major problems for translating gene therapy for heart failure therapy are: safe and efficient delivery and the inability to establish a relationship between vector exposure and in vivo effects. We present a pharmacokinetics (PK) analysis of molecular cardiac surgery with recirculating delivery (MCARD) of scAAV6-ßARKct. MCARD's stable cardiac specific delivery profile was exploited to determine vector exposure, half-life, and systemic clearance. METHODS AND RESULTS: Five naive sheep underwent MCARD with 10(14) genome copies of scAAV6-ßARKct. Blood samples were collected over the recirculation interval time of 20 minutes and evaluated with quantitative polymerase chain reaction (qPCR). C(t) curves were generated and expressed on a log scale. The exposure, half-life, and clearance curves were generated for analysis. qPCR and Western blots were used to determine biodistribution. Finally, all in vivo transduction data was plotted against MCARD's PK to determine if a relationship existed. Vector concentrations at each time point were (cardiac and systemic, respectively): 5 minutes: 9.16 ± 0.15 and 3.21 ± 0.38; 10 minutes: 8.81 ± 0.19 and 3.62 ± 0.37; 15 minutes: 8.75 ± 0.12 and 3.69 ± 0.31; and 20 minutes: 8.66 ± 0.22 and 3.95 ± 0.26; P < .00001. The half life of the vector was 2.66 ± 0.24 minutes. PK model data revealed that only 0.61 ± 0.43% of the original dose remained in the blood after delivery, and complete clearance from the system was achieved at 1 week. A PK transfer function revealed a positive correlation between exposure and in vivo transduction. Robust ßARKct expression was found in all cardiac regions with none in the liver. CONCLUSION: MCARD may offer a viable method to establish a relationship between vector exposure and in vivo transduction. Using this methodology, it may be possible to address a critical need for establishing an effective therapeutic window.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/métodos , Circulación Coronaria/fisiología , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Péptidos/sangre , Péptidos/farmacocinética , Proteínas Recombinantes/sangre , Proteínas Recombinantes/farmacocinética , Animales , Péptidos/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Ovinos , Distribución Tisular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA