Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35271088

RESUMEN

The detection of muscle contraction and the estimation of muscle force are essential tasks in robot-assisted rehabilitation systems. The most commonly used method to investigate muscle contraction is surface electromyography (EMG), which, however, shows considerable disadvantages in predicting the muscle force, since unpredictable factors may influence the detected force but not necessarily the EMG data. Electrical impedance myography (EIM) investigates the change in electrical impedance during muscle activities and is another promising technique to investigate muscle functions. This paper introduces the design, development, and evaluation of a device that performs EMG and EIM simultaneously for more robust measurement of muscle conditions subject to artifacts. The device is light, wearable, and wireless and has a modular design, in which the EMG, EIM, micro-controller, and communication modules are stacked and interconnected through connectors. As a result, the EIM module measures the bioimpedance between 20 and 200 Ω with an error of less than 5% at 140 SPS. The settling time during the calibration phase of this module is less than 1000 ms. The EMG module captures the spectrum of the EMG signal between 20-150 Hz at 1 kSPS with an SNR of 67 dB. The micro-controller and communication module builds an ARM-Cortex M3 micro-controller which reads and transfers the captured data every 1 ms over RF (868 Mhz) with a baud rate of 500 kbps to a receptor connected to a PC. Preliminary measurements on a volunteer during leg extension, walking, and sit-to-stand showed the potential of the system to investigate muscle function by combining simultaneous EMG and EIM.


Asunto(s)
Contracción Muscular , Dispositivos Electrónicos Vestibles , Impedancia Eléctrica , Electromiografía/métodos , Humanos , Músculos
2.
Sensors (Basel) ; 22(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35009681

RESUMEN

Vascular tone plays a vital role in regulating blood pressure and coronary circulation, and it determines the peripheral vascular resistance. Vascular tone is dually regulated by the perivascular nerves and the cells in the inside lining of blood vessels (endothelial cells). Only a few methods for measuring vascular tone are available. Because of this, determining vascular tone in different arteries of the human body and monitoring tone changes is a vital challenge. This work presents an approach for determining vascular tone in human extremities based on multi-channel bioimpedance measurements. Detailed steps for processing the bioimpedance signals and extracting the main parameters from them have been presented. A graphical interface has been designed and implemented to display the vascular tone type in all channels with the phase of breathing during each cardiac cycle. This study is a key step towards understanding the way vascular tone changes in the extremities and how the nervous system regulates these changes. Future studies based on records of healthy and diseased people will contribute to increasing the possibility of early diagnosis of cardiovascular diseases.


Asunto(s)
Arterias , Células Endoteliales , Presión Sanguínea , Extremidades , Humanos
3.
Sensors (Basel) ; 22(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35009694

RESUMEN

Creating highly functional prosthetic, orthotic, and rehabilitation devices is a socially relevant scientific and engineering task. Currently, certain constraints hamper the development of such devices. The primary constraint is the lack of an intuitive and reliable control interface working between the organism and the actuator. The critical point in developing these devices and systems is determining the type and parameters of movements based on control signals recorded on an extremity. In the study, we investigate the simultaneous acquisition of electric impedance (EI), electromyography (EMG), and force myography (FMG) signals during basic wrist movements: grasping, flexion/extension, and rotation. For investigation, a laboratory instrumentation and software test setup were made for registering signals and collecting data. The analysis of the acquired signals revealed that the EI signals in conjunction with the analysis of EMG and FMG signals could potentially be highly informative in anthropomorphic control systems. The study results confirm that the comprehensive real-time analysis of EI, EMG, and FMG signals potentially allows implementing the method of anthropomorphic and proportional control with an acceptable delay.


Asunto(s)
Biónica , Miografía , Impedancia Eléctrica , Electromiografía , Movimiento , Muñeca
4.
Sensors (Basel) ; 22(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35009640

RESUMEN

The electrical impedance myography method is widely used in solving bionic control problems and consists of assessing the change in the electrical impedance magnitude during muscle contraction in real time. However, the choice of electrode systems sizes is not always properly considered when using the electrical impedance myography method in the existing approaches, which is important in terms of electrical impedance signal expressiveness and reproducibility. The article is devoted to the determination of acceptable sizes for the electrode systems for electrical impedance myography using the Pareto optimality assessment method and the electrical impedance signals formation model of the forearm area, taking into account the change in the electrophysical and geometric parameters of the skin and fat layer and muscle groups when performing actions with a hand. Numerical finite element simulation using anthropometric models of the forearm obtained by volunteers' MRI 3D reconstructions was performed to determine a sufficient degree of the forearm anatomical features detailing in terms of the measured electrical impedance. For the mathematical description of electrical impedance relationships, a forearm two-layer model, represented by the skin-fat layer and muscles, was reasonably chosen, which adequately describes the change in electrical impedance when performing hand actions. Using this model, for the first time, an approach that can be used to determine the acceptable sizes of electrode systems for different parts of the body individually was proposed.


Asunto(s)
Músculo Esquelético , Miografía , Impedancia Eléctrica , Electrodos , Humanos , Reproducibilidad de los Resultados
5.
Biosensors (Basel) ; 14(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391995

RESUMEN

This present work is aimed at conducting fundamental and exploratory studies of the mechanisms of electrical impedance signal formation. This paper also considers morphofunctional changes in forearm tissues during the performance of basic hand actions. For this purpose, the existing research benches were modernized to conduct experiments of mapping forearm muscle activity by electrode systems on the basis of complexing the electrical impedance signals and electromyography signals and recording electrode systems' pressing force using force transducers. Studies were carried out with the involvement of healthy volunteers in the implementation of vertical movement of the electrode system and ultrasound transducer when the subject's upper limb was positioned in the bed of the stand while performing basic hand actions in order to identify the relationship between the morphofunctional activity of the upper limb muscles and the recorded parameters of the electro-impedance myography signal. On the basis of the results of the studies, including complex measurements of neuromuscular activity on healthy volunteers such as the signals of electro-impedance myography and pressing force, analyses of the morphofunctional changes in tissues during action performance on the basis of ultrasound and MRI studies and the factors influencing the recorded signals of electro-impedance myography are described. The results are of fundamental importance and will enable reproducible electro-impedance myography signals, which, in turn, allow improved anthropomorphic control.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Humanos , Impedancia Eléctrica , Electromiografía , Contracción Muscular/fisiología , Miografía/métodos
6.
Biosensors (Basel) ; 13(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36671931

RESUMEN

The incidence of cardiovascular diseases is continuously increasing around the world. Therefore, the study of new methods for diagnosing cardiovascular diseases is very important. Early diagnosis and evaluation of the effectiveness of treatments are among the most important tasks. In this work, we study changes in vascular compliance and vascular tone of the lower extremities in a patient diagnosed with an early stage of varicose veins. The study is based on recording the bioimpedance signals of the lower extremities and their parts using the Rheo-32 multichannel device. Registration in the monitoring system takes place in two stages: the first in a state of relaxation, and the second after applying a local massage on one of the legs for five minutes. The results indicate a change in the type of vascular tone of the lower extremities after the massage, while the type of vascular tone changes and shifts on average towards the normotonic type. The method proposed in this study makes it possible to quantitatively and qualitatively assess changes in the tone of the vessels of the extremities.


Asunto(s)
Enfermedades Cardiovasculares , Várices , Humanos , Várices/diagnóstico , Várices/etiología , Várices/terapia , Extremidad Inferior/irrigación sanguínea , Pierna/irrigación sanguínea , Venas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA