Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 49(1): 164-177.e6, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958802

RESUMEN

Pro-inflammatory cytokines of a T helper-1-signature are known to promote insulin resistance (IR) in obesity, but the physiological role of this mechanism is unclear. It is also unknown whether and how viral infection induces loss of glycemic control in subjects at risk for developing diabetes mellitus type 2 (DM2). We have found in mice and humans that viral infection caused short-term systemic IR. Virally-induced interferon-γ (IFN-γ) directly targeted skeletal muscle to downregulate the insulin receptor but did not cause loss of glycemic control because of a compensatory increase of insulin production. Hyperinsulinemia enhanced antiviral immunity through direct stimulation of CD8+ effector T cell function. In pre-diabetic mice with hepatic IR caused by diet-induced obesity, infection resulted in loss of glycemic control. Thus, upon pathogen encounter, the immune system transiently reduces insulin sensitivity of skeletal muscle to induce hyperinsulinemia and promote antiviral immunity, which derails to glucose intolerance in pre-diabetic obese subjects. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus/inmunología , Resistencia a la Insulina , Insulina/inmunología , Interferón gamma/metabolismo , Músculo Esquelético/metabolismo , Obesidad/inmunología , Virosis/complicaciones , Animales , Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/virología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Humanos , Hiperinsulinismo , Insulina/sangre , Masculino , Ratones , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/virología , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
2.
PLoS Pathog ; 19(12): e1011793, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064525

RESUMEN

Like all herpesviruses, cytomegaloviruses (CMVs) code for many immunomodulatory proteins including chemokines. The human cytomegalovirus (HCMV) CC chemokine pUL128 has a dual role in the infection cycle. On one hand, it forms the pentameric receptor-binding complex gHgLpUL(128,130,131A), which is crucial for the broad cell tropism of HCMV. On the other hand, it is an active chemokine that attracts leukocytes and shapes their activation. All animal CMVs studied so far have functionally homologous CC chemokines. In murine cytomegalovirus (MCMV), the CC chemokine is encoded by the m131/m129 reading frames. The MCMV CC chemokine is called MCK2 and forms a trimeric gHgLMCK2 entry complex. Here, we have generated MCK2 mutant viruses either unable to form gHgLMCK2 complexes, lacking the chemokine function or lacking both functions. By using these viruses, we could demonstrate that gHgLMCK2-dependent entry and MCK2 chemokine activity are independent functions of MCK2 in vitro and in vivo. The gHgLMCK2 complex promotes the tropism for leukocytes like macrophages and dendritic cells and secures high titers in salivary glands in MCMV-infected mice independent of the chemokine activity of MCK2. In contrast, reduced early antiviral T cell responses in MCMV-infected mice are dependent on MCK2 being an active chemokine and do not require the formation of gHgLMCK2 complexes. High levels of CCL2 and IFN-γ in spleens of infected mice and MCMV virulence depend on both, the formation of gHgLMCK2 complexes and the MCK2 chemokine activity. Thus, independent and concerted functions of MCK2 serving as chemokine and part of a gHgL entry complex shape antiviral immunity and virus dissemination.


Asunto(s)
Quimiocinas CC , Infecciones por Citomegalovirus , Muromegalovirus , Animales , Humanos , Ratones , Quimiocinas/metabolismo , Citomegalovirus/metabolismo , Tropismo , Proteínas Virales/genética
3.
Eur J Immunol ; 52(6): 936-945, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304741

RESUMEN

COVID-19 vaccines prevent severe forms of the disease, but do not warrant complete protection against breakthrough infections. This could be due to suboptimal mucosal immunity at the site of virus entry, given that all currently approved vaccines are administered via the intramuscular route. In this study, we assessed humoral and cellular immune responses in BALB/c mice after intranasal and intramuscular immunization with adenoviral vector ChAdOx1-S expressing full-length Spike protein of SARS-CoV-2. We showed that both routes of vaccination induced a potent IgG antibody response, as well as robust neutralizing capacity, but intranasal vaccination elicited a superior IgA antibody titer in the sera and in the respiratory mucosa. Bronchoalveolar lavage from intranasally immunized mice efficiently neutralized SARS-CoV-2, which has not been the case in intramuscularly immunized group. Moreover, substantially higher percentages of epitope-specific CD8 T cells exhibiting a tissue resident phenotype were found in the lungs of intranasally immunized animals. Finally, both intranasal and intramuscular vaccination with ChAdOx1-S efficiently protected the mice after the challenge with recombinant herpesvirus expressing the Spike protein. Our results demonstrate that intranasal application of adenoviral vector ChAdOx1-S induces superior mucosal immunity and therefore could be a promising strategy for putting the COVID-19 pandemic under control.


Asunto(s)
COVID-19 , Vacunas Virales , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Celular , Inmunidad Mucosa , Ratones , Ratones Endogámicos BALB C , Pandemias/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación/métodos
4.
PLoS Pathog ; 17(12): e1010175, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34929007

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Dominios Proteicos , Proteínas Recombinantes de Fusión/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Sitios de Unión , Sitios de Unión de Anticuerpos , COVID-19/prevención & control , Chlorocebus aethiops , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Inmunoglobulina G/uso terapéutico , Ratones Transgénicos , Pruebas de Neutralización , Unión Proteica , Proteínas Recombinantes de Fusión/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Células Vero
5.
Proc Natl Acad Sci U S A ; 117(23): 12961-12968, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32444487

RESUMEN

Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Interacciones Microbiota-Huesped/inmunología , Evasión Inmune , Linfocitos T Citotóxicos/inmunología , Animales , Apoptosis/inmunología , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular , Técnicas de Cocultivo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/virología , Modelos Animales de Enfermedad , Fibroblastos , Granzimas/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Ratones , Ratones Noqueados , Muromegalovirus/genética , Muromegalovirus/inmunología , Muromegalovirus/metabolismo , Mutagénesis , Perforina/genética , Perforina/metabolismo , Receptores de Muerte Celular/metabolismo , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/metabolismo , Imagen de Lapso de Tiempo , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
6.
BMC Med ; 20(1): 102, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236358

RESUMEN

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Asunto(s)
COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
7.
J Virol ; 93(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30404805

RESUMEN

Cytomegaloviruses (CMVs) establish systemic infections across diverse cell types. Glycoproteins that alter tropism can potentially guide their spread. Glycoprotein O (gO) is a nonessential fusion complex component of both human CMV (HCMV) and murine CMV (MCMV). We tested its contribution to MCMV spread from the respiratory tract. In vitro, MCMV lacking gO poorly infected fibroblasts and epithelial cells. Cell binding was intact, but penetration was delayed. In contrast, myeloid infection was preserved, and in the lungs, where myeloid and type 2 alveolar epithelial cells are the main viral targets, MCMV lacking gO showed a marked preference for myeloid infection. Its poor epithelial cell infection was associated with poor primary virus production and reduced virulence. Systemic spread, which proceeds via infected CD11c+ myeloid cells, was initially intact but then diminished, because less epithelial infection led ultimately to less myeloid infection. Thus, the tight linkage between peripheral and systemic MCMV infections gave gO-dependent infection a central role in host colonization.IMPORTANCE Human cytomegalovirus is a leading cause of congenital disease. This reflects its capacity for systemic spread. A vaccine is needed, but the best viral targets are unclear. Attention has focused on the virion membrane fusion complex. It has 2 forms, so we need to know what each contributes to host colonization. One includes the virion glycoprotein O. We used murine cytomegalovirus, which has equivalent fusion complexes, to determine the importance of glycoprotein O after mucosal infection. We show that it drives local virus replication in epithelial cells. It was not required to infect myeloid cells, which establish systemic infection, but poor local replication reduced systemic spread as a secondary effect. Therefore, targeting glycoprotein O of human cytomegalovirus has the potential to reduce both local and systemic infections.


Asunto(s)
Células Epiteliales/virología , Fibroblastos/virología , Infecciones por Herpesviridae/virología , Pulmón/virología , Glicoproteínas de Membrana/metabolismo , Muromegalovirus/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Replicación Viral , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Infecciones por Herpesviridae/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Internalización del Virus
8.
Eur J Immunol ; 48(6): 950-964, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29500823

RESUMEN

Congenital HCMV infection is a leading infectious cause of long-term neurodevelopmental sequelae. Infection of newborn mice with mouse cytomegalovirus (MCMV) intraperitoneally is a well-established model of congenital human cytomegalovirus infection, which best recapitulates the hematogenous route of virus spread to brain and subsequent pathology. Here, we used this model to investigate the role, dynamics, and phenotype of CD8+ T cells in the brain following infection of newborn mice. We show that CD8+ T cells infiltrate the brain and form a pool of tissue-resident memory T cells (TRM cells) that persist for lifetime. Adoptively transferred virus-specific CD8+ T cells provide protection against primary MCMV infection in newborn mice, reduce brain pathology, and remain in the brain as TRM cells. Brain CD8+ TRM cells were long-lived, slowly proliferating cells able to respond to local challenge infection. Importantly, brain CD8+ TRM cells controlled latent MCMV and their depletion resulted in virus reactivation and enhanced inflammation in brain.


Asunto(s)
Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/fisiología , Muromegalovirus/fisiología , Linfocitos T Citotóxicos/inmunología , Activación Viral/inmunología , Traslado Adoptivo , Animales , Animales Recién Nacidos , Linfocitos T CD8-positivos/trasplante , Células Cultivadas , Anomalías Congénitas , Modelos Animales de Enfermedad , Humanos , Memoria Inmunológica , Ratones , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/trasplante
9.
PLoS Pathog ; 13(4): e1006281, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28403202

RESUMEN

Herpesvirus gH/gL envelope glycoprotein complexes are key players in virus entry as ligands for host cell receptors and by promoting fusion of viral envelopes with cellular membranes. Human cytomegalovirus (HCMV) has two alternative gH/gL complexes, gH/gL/gO and gH/gL/UL128,130,131A which both shape the HCMV tropism. By studying binding of HCMV particles to fibroblasts, we could for the first time show that virion gH/gL/gO binds to platelet-derived growth factor-α (PDGFR-α) on the surface of fibroblasts and that gH/gL/gO either directly or indirectly recruits gB to this complex. PDGFR-α functions as an entry receptor for HCMV expressing gH/gL/gO, but not for HCMV mutants lacking the gH/gL/gO complex. PDGFR-α-dependent entry is not dependent on activation of PDGFR-α. We could also show that the gH/gL/gO-PDGFR-α interaction starts the predominant entry pathway for infection of fibroblasts with free virus. Cell-associated virus spread is either driven by gH/gL/gO interacting with PDGFR-α or by the gH/gL/UL128,130,131A complex. PDGFR-α-positive cells may thus be preferred first target cells for infections with free virus which might have implications for the design of future HCMV vaccines or anti-HCMV drugs.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Línea Celular , Células Cultivadas , Citomegalovirus/genética , Fibroblastos/virología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Complejos Multiproteicos , Mutación , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Recombinantes , Proteínas del Envoltorio Viral/genética , Virión
10.
Med Microbiol Immunol ; 208(3-4): 487-494, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30923899

RESUMEN

Cytomegalovirus (CMV) infection is a significant public health problem. Congenital CMV infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Immune protection against mouse cytomegalovirus (MCMV) is primarily mediated by NK cells and CD8+ T cells, while CD4+ T cells are not needed for control of MCMV in majority of organs in immunocompetent adult mice. Here, we set out to determine the role of CD4+ T cells upon MCMV infection of newborn mice. We provide evidence that CD4+ T cells are essential for clearance of MCMV infection in brain of neonatal mice and for prevention of recurrence of latent MCMV. In addition, we provide evidence that CD4+ T cells are required for induction and maintenance of tissue-resident memory CD8+ T cells in the brain of mice perinatally infected with MCMV.


Asunto(s)
Encéfalo/inmunología , Encéfalo/virología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Muromegalovirus/crecimiento & desarrollo , Muromegalovirus/inmunología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Ratones
11.
Eur J Immunol ; 47(9): 1443-1456, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28643847

RESUMEN

NKp46/NCR1 is an activating NK-cell receptor implicated in the control of various viral and bacterial infections. Recent findings also suggest that it plays a role in shaping the adaptive immune response to pathogens. Using NCR1-deficient (NCR1gfp/gfp ) mice, we provide evidence for the role of NCR1 in antibody response to mouse cytomegalovirus infection (MCMV). The absence of NCR1 resulted in impaired maturation, function and NK-cell migration to regional lymph nodes. In addition, CD4+ T-cell activation and follicular helper T-cell (Tfh) generation were reduced, leading to inferior germinal center (GC) B-cell maturation. As a consequence, NCR1gfp/gfp mice produced lower amounts of MCMV-specific antibodies upon infection, which correlated with lower number of virus-specific antibody secreting cells in analyzed lymph nodes.


Asunto(s)
Antígenos Ly/metabolismo , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Centro Germinal/inmunología , Infecciones por Herpesviridae/inmunología , Células Asesinas Naturales/inmunología , Muromegalovirus/inmunología , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Animales , Anticuerpos Antivirales/sangre , Antígenos Ly/genética , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Inmunidad Humoral , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/genética
12.
PLoS Pathog ; 11(2): e1004640, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25659098

RESUMEN

Herpesviruses form different gH/gL virion envelope glycoprotein complexes that serve as entry complexes for mediating viral cell-type tropism in vitro; their roles in vivo, however, remained speculative and can be addressed experimentally only in animal models. For murine cytomegalovirus two alternative gH/gL complexes, gH/gL/gO and gH/gL/MCK-2, have been identified. A limitation of studies on viral tropism in vivo has been the difficulty in distinguishing between infection initiation by viral entry into first-hit target cells and subsequent cell-to-cell spread within tissues. As a new strategy to dissect these two events, we used a gO-transcomplemented ΔgO mutant for providing the gH/gL/gO complex selectively for the initial entry step, while progeny virions lack gO in subsequent rounds of infection. Whereas gH/gL/gO proved to be critical for establishing infection by efficient entry into diverse cell types, including liver macrophages, endothelial cells, and hepatocytes, it was dispensable for intra-tissue spread. Notably, the salivary glands, the source of virus for host-to-host transmission, represent an exception in that entry into virus-producing cells did not strictly depend on either the gH/gL/gO or the gH/gL/MCK-2 complex. Only if both complexes were absent in gO and MCK-2 double-knockout virus, in vivo infection was abolished at all sites.


Asunto(s)
Infecciones por Citomegalovirus/transmisión , Citomegalovirus/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Tropismo Viral/fisiología , Animales , Infecciones por Citomegalovirus/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos BALB C
13.
J Gen Virol ; 97(8): 1917-1927, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27050420

RESUMEN

The glycoproteins gH and gL of human cytomegalovirus (HCMV) form a complex either with pUL74 (trimeric complex) or with proteins of the UL128 locus (pentameric complex). While the pentameric complex is dispensable for viral growth in fibroblasts, deletion of pUL74 causes a small plaque phenotype in HCMV lab strains, accompanied by greatly reduced cell-free infectivity. As HCMV isolates, shortly after cultivation from clinical specimens, do not release cell-free infectious viruses, we wondered whether deletion of pUL74 would also affect virus growth in this background. To address this question, we took advantage of the bacterial artificial chromosome (BAC)-cloned virus Merlin-RL13tetO, which grows cell associated due to the inducible expression of the viral RL13 gene, thereby resembling clinical isolates. Stop codons were introduced by seamless mutagenesis into UL74 and/or the UL128 locus to prevent expression of the trimeric or pentameric complex, respectively. Virus mutants were reconstituted by transfection of the respective genomes into cultured cells and analysed with respect to focal growth. When the UL128 locus was intact, deletion of pUL74 did not notably affect focal growth of Merlin, irrespective of RL13 expression. In the absence of UL128 expression, foci were increased compared with wild-type, and infectious cell-free virus was produced. Under these conditions, disruption of UL74 completely prevented virus spread from initially transfected cells to surrounding cells. In conclusion the contribution of pUL74 is masked when the UL128 locus is expressed at high levels, and its role in cell-free virus spread is only revealed when expression of the pentameric complex is inhibited.


Asunto(s)
Citomegalovirus/crecimiento & desarrollo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Células Cultivadas , Citomegalovirus/genética , Fibroblastos/virología , Eliminación de Gen , Humanos , Glicoproteínas de Membrana/genética , Proteínas del Envoltorio Viral/genética
14.
PLoS Pathog ; 9(7): e1003493, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935483

RESUMEN

Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination.


Asunto(s)
Quimiocinas CC/metabolismo , Infecciones por Herpesviridae/inmunología , Inmunidad Innata , Macrófagos/inmunología , Muromegalovirus/fisiología , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , Animales , Línea Celular , Células Cultivadas , Quimiocinas CC/química , Quimiocinas CC/genética , Femenino , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Hígado/inmunología , Hígado/patología , Hígado/virología , Macrófagos/patología , Macrófagos/virología , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/patología , Macrófagos Peritoneales/virología , Ratones , Ratones Endogámicos BALB C , Muromegalovirus/inmunología , Mutación , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Organismos Libres de Patógenos Específicos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas Virales/química , Proteínas Virales/genética , Virión/inmunología , Virión/fisiología
15.
Front Cell Neurosci ; 18: 1364485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450285

RESUMEN

Innate lymphoid cells (ILCs) are largely tissue-resident cells that participate in the maintenance of tissue homeostasis and react early to inflammatory events. Mature ILCs are divided into three major groups based on the transcription factors required for their development and function. Under physiological conditions, ILCs are present within the choroid plexus and meninges while the CNS parenchyma is almost devoid of these cells. However, pathological conditions such as autoimmune neuroinflammation and viral infections of the CNS result in the infiltration of ILCs into parenchyma. In this article, we provide an overview of the involvement and function of the ILCs within the CNS during physiological conditions and in infections, autoimmune diseases, neurodegeneration, and injury.

16.
Biomol Biomed ; 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340324

RESUMEN

This study explores the correlation between immunological and clinical characteristics in coronavirus disease 2019 (COVID-19) patients with detectable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in feces, analyzing data from 251 patients admitted to Mostar University Clinical Hospital from December 2021 to January 2022. Methods involved reverse transcription quantitative polymerase chain reaction (RT-qPCR) from nasopharyngeal swabs and feces, alongside serological tests for anti-SARS-CoV-2 spike IgGs. Demographic and clinical data were collected through questionnaires and medical records. The data analyses were performed using SPSS statistical software. Death occurred in 53 patients (21.1%, P < 0.001), mostly in the elderly (47/53, 88.7%, P = 0.001) and immunocompromised (19/53, 35.8%, P = 0.05), particularly those developing acute respiratory insufficiency (ARI) (46/53, 86.8%, P = 0.004), and severe/critical disease (46/53, 86.8%, P = 0.002). Among the patients with positive anti-SARS-CoV-2 IgG antibodies (86/251, 34.3%, P < 0.001), 41 (47.7%) were vaccinated and 45 (52.3%) unvaccinated (P = 0.666), showing no significant differences in clinical outcomes or mortality. Unvaccinated patients with a negative antibody titer had a higher incidence of ARI (96/123, 78%, P = 0.029) and intensive care unit admission (22/123, 17.9%, P = 0.026), than those with a positive antibody titer. Forty-seven (62.7%) patients, out of the 75 hospitalized who provided a feces sample, were positive for SARS-CoV-2 RNA (P = 0.028), without statistical differences between fecal SARS-CoV-2 positive and negative groups regarding vaccination status (15/47, 31.9%, P = 0.493), antibody status (18/47, 38.3%, P = 0.628) or death outcome (5/47, 10.6%, P = 0.706). In conclusion, unvaccinated hospitalized patients with a severe COVID-19 presentation and a negative anti-spike SARS-CoV-2 IgG titer had adverse outcomes more frequently. This suggests cautious consideration for the diagnostic use of fecal samples compared to nasopharyngeal swabs.

17.
Sci Rep ; 14(1): 13605, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871772

RESUMEN

The aim of this study was to characterize the systemic cytokine signature of critically ill COVID-19 patients in a high mortality setting aiming to identify biomarkers of severity, and to explore their associations with viral loads and clinical characteristics. We studied two COVID-19 critically ill patient cohorts from a referral centre located in Central Europe. The cohorts were recruited during the pre-alpha/alpha (November 2020 to April 2021) and delta (end of 2021) period respectively. We determined both the serum and bronchoalveolar SARS-CoV-2 viral load and identified the variant of concern (VoC) involved. Using a cytokine multiplex assay, we quantified systemic cytokine concentrations and analyzed their relationship with clinical findings, routine laboratory workup and pulmonary function data obtained during the ICU stay. Patients who did not survive had a significantly higher systemic and pulmonary viral load. Patients infected with the pre-alpha VoC showed a significantly lower viral load in comparison to those infected with the alpha- and delta-variants. Levels of systemic CTACK, M-CSF and IL-18 were significantly higher in non-survivors in comparison to survivors. CTACK correlated directly with APACHE II scores. We observed differences in lung compliance and the association between cytokine levels and pulmonary function, dependent on the VoC identified. An intra-cytokine analysis revealed a loss of correlation in the non-survival group in comparison to survivors in both cohorts. Critically ill COVID-19 patients exhibited a distinct systemic cytokine profile based on their survival outcomes. CTACK, M-CSF and IL-18 were identified as mortality-associated analytes independently of the VoC involved. The Intra-cytokine correlation analysis suggested the potential role of a dysregulated systemic network of inflammatory mediators in severe COVID-19 mortality.


Asunto(s)
COVID-19 , Enfermedad Crítica , Citocinas , Unidades de Cuidados Intensivos , SARS-CoV-2 , Humanos , COVID-19/mortalidad , COVID-19/sangre , Citocinas/sangre , Masculino , Persona de Mediana Edad , Femenino , Anciano , Carga Viral , Biomarcadores/sangre , Estudios de Cohortes , Pandemias
18.
Nat Commun ; 14(1): 3087, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248241

RESUMEN

To date, no herpesvirus has been shown to latently persist in fibroblastic cells. Here, we show that murine cytomegalovirus, a ß-herpesvirus, persists for the long term and across organs in PDGFRα-positive fibroblastic cells, with similar or higher genome loads than in the previously known sites of murine cytomegalovirus latency. Whereas murine cytomegalovirus gene transcription in PDGFRα-positive fibroblastic cells is almost completely silenced at 5 months post-infection, these cells give rise to reactivated virus ex vivo, arguing that they support latent murine cytomegalovirus infection. Notably, PDGFRα-positive fibroblastic cells also support productive virus replication during primary murine cytomegalovirus infection. Mechanistically, Stat1-deficiency promotes lytic infection but abolishes latent persistence of murine cytomegalovirus in PDGFRα-positive fibroblastic cells in vivo. In sum, fibroblastic cells have a dual role as a site of lytic murine cytomegalovirus replication and a reservoir of latent murine cytomegalovirus in vivo and STAT1 is required for murine cytomegalovirus latent persistence in vivo.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Animales , Ratones , Citomegalovirus/genética , Latencia del Virus/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Replicación Viral , Fibroblastos , Factor de Transcripción STAT1/genética
19.
NPJ Vaccines ; 8(1): 8, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737485

RESUMEN

Human cytomegalovirus (HCMV) frequently causes congenital infections, resulting in birth defects and developmental disorders. A vaccine is needed, but unavailable. We analyzed the potential of CMV mutants, lacking their STAT2 antagonists to serve as live attenuated vaccine viruses in mice. Infections with attenuated viruses elicited strong ELISA-reactive binding IgG responses and induced neutralizing antibodies as well as antibodies stimulating cellular Fcγ receptors, including the antibody-dependent cellular cytotoxicity (ADCC)-eliciting receptors FcγRIII/CD16 and FcγRIV. Accordingly, vaccinated mice were fully protected against challenge infections. Female mice vaccinated prior to gestation transmitted CMV-specific IgG to their offspring, which protected the progeny from perinatal infections in a mouse model for congenital CMV disease. To define the role of maternal antibodies, female mice either capable or incapable of producing antibodies were vaccinated and subsequently bred to males of the opposite genotype. Challenge infections of the genotypically identical F1 generation revealed the indispensability of maternal antibodies for vaccine-induced protection against cytomegaloviruses.

20.
Nat Commun ; 14(1): 6412, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828009

RESUMEN

Infections in early life can elicit substantially different immune responses and pathogenesis than infections in adulthood. Here, we investigate the consequences of murine cytomegalovirus infection in newborn mice on NK cells. We show that infection severely compromised NK cell maturation and functionality in newborns. This effect was not due to compromised virus control. Inflammatory responses to infection dysregulated the expression of major transcription factors governing NK cell fate, such as Eomes, resulting in impaired NK cell function. Most prominently, NK cells from perinatally infected mice have a diminished ability to produce IFN-γ due to the downregulation of long non-coding RNA Ifng-as1 expression. Moreover, the bone marrow's capacity to efficiently generate new NK cells is reduced, explaining the prolonged negative effects of perinatal infection on NK cells. This study demonstrates that viral infections in early life can profoundly impact NK cell biology, including long-lasting impairment in NK cell functionality.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Ratones , Animales , Células Asesinas Naturales , Infecciones por Citomegalovirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA