Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
2.
Mol Cell ; 73(5): 900-914.e9, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733119

RESUMEN

Post-replication repair (PRR) allows tolerance of chemical- and UV-induced DNA base lesions in both an error-free and an error-prone manner. In classical PRR, PCNA monoubiquitination recruits translesion synthesis (TLS) DNA polymerases that can replicate through lesions. We find that PRR responds to DNA replication stress that does not cause base lesions. Rad5 forms nuclear foci during normal S phase and after exposure to types of replication stress where DNA base lesions are likely absent. Rad5 binds to the sites of stressed DNA replication forks, where it recruits TLS polymerases to repair single-stranded DNA (ssDNA) gaps, preventing mitotic defects and chromosome breaks. In contrast to the prevailing view of PRR, our data indicate that Rad5 promotes both mutagenic and error-free repair of undamaged ssDNA that arises during physiological and exogenous replication stress.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Cromosomas Fúngicos , ADN Helicasas/genética , ADN de Hongos/genética , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mitosis , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
3.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37697435

RESUMEN

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Animales , Femenino , Humanos , Ratones , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , Inestabilidad Genómica , Recurrencia Local de Neoplasia , Estructuras R-Loop , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Yeast ; 41(10): 585-592, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39248173

RESUMEN

Common Saccharomyces cerevisiae lab yeast strains derived from S288C have meiotic defects and therefore are poor sporulators. Here, we developed a plasmid system containing corrected alleles of the MKT1 and RME1 genes to rescue the meiotic defects and show that standard BY4741 and BY4742 strains containing the plasmid display faster and more efficient sporulation. The plasmid, pSPObooster, can be maintained as an episome and easily cured or stably integrated into the genome at a single locus. We demonstrate the use of pSPObooster in low- and high-throughput yeast genetic manipulations and show that it can expedite both procedures without impacting strain behavior.


Asunto(s)
Plásmidos , Saccharomyces cerevisiae , Esporas Fúngicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Plásmidos/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Meiosis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell ; 61(3): 405-418, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26774285

RESUMEN

DNA double-strand break repair by homologous recombination is initiated by the formation of 3' single-stranded DNA (ssDNA) overhangs by a process termed end resection. Although much focus has been given to the decision to initiate resection, little is known of the mechanisms that regulate the ongoing formation of ssDNA tails. Here we report that DNA helicase B (HELB) underpins a feedback inhibition mechanism that curtails resection. HELB is recruited to ssDNA by interacting with RPA and uses its 5'-3' ssDNA translocase activity to inhibit EXO1 and BLM-DNA2, the nucleases catalyzing resection. HELB acts independently of 53BP1 and is exported from the nucleus as cells approach S phase, concomitant with the upregulation of resection. Consistent with its role as a resection antagonist, loss of HELB results in PARP inhibitor resistance in BRCA1-deficient tumor cells. We conclude that mammalian DNA end resection triggers its own inhibition via the recruitment of HELB.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Helicasas/metabolismo , Neoplasias Mamarias Experimentales/enzimología , Animales , Proteína BRCA1/genética , ADN Helicasas/deficiencia , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Fase S , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética
6.
Nucleic Acids Res ; 49(22): 12785-12804, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871443

RESUMEN

Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.


Asunto(s)
G-Cuádruplex , Inestabilidad Genómica , Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Aberraciones Cromosómicas , Daño del ADN , Genoma Fúngico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostasis del Telómero
7.
Microb Cell Fact ; 21(1): 280, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587193

RESUMEN

BACKGROUND: Over the 70 years since the introduction of plastic into everyday items, plastic waste has become an increasing problem. With over 360 million tonnes of plastics produced every year, solutions for plastic recycling and plastic waste reduction are sorely needed. Recently, multiple enzymes capable of degrading PET (polyethylene terephthalate) plastic have been identified and engineered. In particular, the enzymes PETase and MHETase from Ideonella sakaiensis depolymerize PET into the two building blocks used for its synthesis, ethylene glycol (EG) and terephthalic acid (TPA). Importantly, EG and TPA can be re-used for PET synthesis allowing complete and sustainable PET recycling. RESULTS: In this study we used Saccharomyces cerevisiae, a species utilized widely in bioindustrial fermentation processes, as a platform to develop a whole-cell catalyst expressing the MHETase enzyme, which converts monohydroxyethyl terephthalate (MHET) into TPA and EG. We assessed six expression architectures and identified those resulting in efficient MHETase expression on the yeast cell surface. We show that the MHETase whole-cell catalyst has activity comparable to recombinant MHETase purified from Escherichia coli. Finally, we demonstrate that surface displayed MHETase is active across a range of pHs, temperatures, and for at least 12 days at room temperature. CONCLUSIONS: We demonstrate the feasibility of using S. cerevisiae as a platform for the expression and surface display of PET degrading enzymes and predict that the whole-cell catalyst will be a viable alternative to protein purification-based approaches for plastic degradation.


Asunto(s)
Hidrolasas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Hidrolasas/metabolismo , Glicol de Etileno , Plásticos/metabolismo
8.
Crit Rev Biochem Mol Biol ; 54(3): 301-332, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31429594

RESUMEN

The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Ácido Anhídrido Hidrolasas/genética , Animales , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Humanos , Mutación , Neoplasias/genética , Factores de Transcripción/genética , Ubiquitinación
9.
Biochem Cell Biol ; 98(5): 624-630, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32476470

RESUMEN

Mistranslation occurs when an amino acid not specified by the standard genetic code is incorporated during translation. Since the ribosome does not read the amino acid, tRNA variants aminoacylated with a non-cognate amino acid or containing a non-cognate anticodon dramatically increase the frequency of mistranslation. In a systematic genetic analysis, we identified a suppression interaction between tRNASerUGG, G26A, which mistranslates proline codons by inserting serine, and eco1-1, a temperature sensitive allele of the gene encoding an acetyltransferase required for sister chromatid cohesion. The suppression was partial, with a tRNA that inserts alanine at proline codons and not apparent for a tRNA that inserts serine at arginine codons. Sequencing of the eco1-1 allele revealed a mutation that would convert the highly conserved serine 213 within ß7 of the GCN5-related N-acetyltransferase core to proline. Mutation of P213 in eco1-1 back to the wild-type serine restored the function of the enzyme at elevated temperatures. Our results indicate the utility of mistranslating tRNA variants to identify functionally relevant mutations and identify eco1 as a reporter for mistranslation. We propose that mistranslation could be used as a tool to treat genetic disease.


Asunto(s)
Acetiltransferasas/genética , Alelos , Mutación , Proteínas Nucleares/genética , Prolina/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Serina/genética
10.
Nucleic Acids Res ; 46(11): 5634-5650, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29741650

RESUMEN

Overexpression of the flap endonuclease FEN1 has been observed in a variety of cancer types and is a marker for poor prognosis. To better understand the cellular consequences of FEN1 overexpression we utilized a model of its Saccharomyces cerevisiae homolog, RAD27. In this system, we discovered that flap endonuclease overexpression impedes replication fork progression and leads to an accumulation of cells in mid-S phase. This was accompanied by increased phosphorylation of the checkpoint kinase Rad53 and histone H2A-S129. RAD27 overexpressing cells were hypersensitive to treatment with DNA damaging agents, and defective in ubiquitinating the replication clamp proliferating cell nuclear antigen (PCNA) at lysine 164. These effects were reversed when the interaction between overexpressed Rad27 and PCNA was ablated, suggesting that the observed phenotypes were linked to problems in DNA replication. RAD27 overexpressing cells also exhibited an unexpected dependence on the SUMO ligases SIZ1 and MMS21 for viability. Importantly, we found that overexpression of FEN1 in human cells also led to phosphorylation of CHK1, CHK2, RPA32 and histone H2AX, all markers of genome instability. Our data indicate that flap endonuclease overexpression is a driver of genome instability in yeast and human cells that impairs DNA replication in a manner dependent on its interaction with PCNA.


Asunto(s)
Daño del ADN , Endonucleasas de ADN Solapado/metabolismo , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Neoplasias Pulmonares/enzimología , Carcinoma Pulmonar de Células Pequeñas/enzimología , Sumoilación , Ubiquitinación
11.
Genes Dev ; 26(23): 2590-603, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23207916

RESUMEN

The INO80 chromatin remodeling complex functions in transcriptional regulation, DNA repair, and replication. Here we uncover a novel role for INO80 in regulating chromosome segregation. First, we show that the conserved Ies6 subunit is critical for INO80 function in vivo. Strikingly, we found that loss of either Ies6 or the Ino80 catalytic subunit results in rapid increase in ploidy. One route to polyploidy is through chromosome missegregation due to aberrant centromere structure, and we found that loss of either Ies6 or Ino80 leads to defective chromosome segregation. Importantly, we show that chromatin structure flanking centromeres is altered in cells lacking these subunits and that these alterations occur not in the Cse4-containing centromeric nucleosome, but in pericentric chromatin. We provide evidence that these effects are mediated through misincorporation of H2A.Z, and these findings indicate that H2A.Z-containing pericentric chromatin, as in higher eukaryotes with regional centromeres, is important for centromere function in budding yeast. These data reveal an important additional mechanism by which INO80 maintains genome stability.


Asunto(s)
Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/química , Proteínas Cromosómicas no Histona/metabolismo , Poliploidía , Proteínas de Saccharomyces cerevisiae/metabolismo , Centrómero/química , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Daño del ADN , Regulación Fúngica de la Expresión Génica , Histonas/genética , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
EMBO J ; 34(12): 1704-17, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25896509

RESUMEN

In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down-regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase-independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4-Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi-BRCT-domain (MBD) module that recapitulates the action of Slx4-Rtt107 in checkpoint down-regulation. MBD mimics the damage-induced Dpb11-Slx4-Rtt107 complex by synergistically interacting with lesion-specific phospho-sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11-Slx4-Rtt107 or MBD via a cooperative 'two-site-docking' mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio-temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT-domains interactions.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Daño del ADN/fisiología , Modelos Biológicos , Proteínas Nucleares/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Electroforesis en Gel de Campo Pulsado , Inmunoprecipitación , Proteínas Nucleares/genética , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
13.
EMBO J ; 34(16): 2182-97, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26113155

RESUMEN

Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.


Asunto(s)
Replicación del ADN , ADN de Hongos/metabolismo , Endodesoxirribonucleasas/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular , Histonas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Unión Proteica , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Mol Syst Biol ; 14(5): e7985, 2018 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-29807908

RESUMEN

Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.


Asunto(s)
Mapeo Cromosómico , Código de Barras del ADN Taxonómico , Daño del ADN , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Reparación del ADN , Epistasis Genética , Eliminación de Gen , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Metilmetanosulfonato , Modelos Teóricos , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados
15.
Nat Chem Biol ; 13(9): 982-993, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28759014

RESUMEN

Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.


Asunto(s)
Sistemas de Liberación de Medicamentos , Bibliotecas de Moléculas Pequeñas , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica , Estructura Molecular
19.
Crit Rev Biochem Mol Biol ; 51(2): 110-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26893079

RESUMEN

Proteins directly carry out and regulate cellular functions. As a result, changes in protein levels within a cell directly influence cellular processes. Similarly, it is intuitive that the intracellular localization of proteins is a key component of their functionality. Optimal activity is achieved by a combination of protein concentration, co-compartmentalization with substrates, co-factors and regulators and sequestration from deleterious locales. The proteome within a cell is highly dynamic and changes in response to different environmental conditions. High-throughput microscopic analysis in the budding yeast Saccharomyces cerevisiae has afforded proteome-wide views of protein organization in living cells, and of how protein abundance and location is regulated and remodeled in response to stress.


Asunto(s)
Microscopía Fluorescente/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Ensayos Analíticos de Alto Rendimiento
20.
Mol Cell ; 40(4): 619-31, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21055983

RESUMEN

Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Recombinación Genética , Estrés Fisiológico , Supervivencia Celular , Roturas del ADN de Doble Cadena , Células HeLa , Humanos , FN-kappa B/química , Unión Proteica , Fase S , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA