Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(3): 454-470.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004459

RESUMEN

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Interacciones Microbiota-Huesped/genética , Microbiota/genética , Polimorfismo de Nucleótido Simple , Piel/microbiología , Staphylococcus epidermidis/genética , Adulto , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Staphylococcus epidermidis/aislamiento & purificación , Staphylococcus epidermidis/patogenicidad , Virulencia/genética , Adulto Joven
2.
J Am Chem Soc ; 144(17): 7852-7860, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438502

RESUMEN

Carboranes represent a class of compounds with increasing therapeutic potential. However, few general approaches to readily embed carboranes into small molecules, peptides, and proteins are available. We report a strategy based on palladium-mediated C-X (X = C, S, and N) bond formation for the installation of carborane-containing moieties onto small molecules and peptides. We demonstrate the ability of Pd-based reagents with appropriate ligands to overcome the high hydrophobicity of the carborane group and enable chemoselective conjugation of cysteine residues at room temperature in aqueous buffer. Accordingly, carboranes can be efficiently installed on proteins by employing a combination of a bis-sulfonated biarylphosphine-ligated Pd reagent in an aqueous histidine buffer. This method is successfully employed on nanobodies, a fully synthetic affibody, and the antibody therapeutics trastuzumab and cetuximab. The conjugates of the affibody ZHER2 and the trastuzumab antibody retained binding to their target antigens. Conjugated proteins maintain their activity in cell-based functional assays in HER2-positive BT-474 cell lines. This approach enables the rapid incorporation of carborane moieties into small molecules, peptides, and proteins for further exploration in boron neutron capture therapy, which requires the targeted delivery of boron-dense groups.


Asunto(s)
Boranos , Paladio , Boranos/química , Paladio/química , Péptidos , Proteínas/química , Trastuzumab
3.
Org Biomol Chem ; 18(32): 6364-6377, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32760955

RESUMEN

The thiol-Michael addition is a popular, selective, high-yield "click" reaction utilized for applications ranging from small-molecule synthesis to polymer or surface modification. Here, we combined experimental and quantum mechanical modeling approaches using density functional theory (DFT) to examine the thiol-Michael reaction of N-allyl-N-acrylamide monomers used to prepare sequence-defined oligothioetheramides (oligoTEAs). Experimentally, the reaction was evaluated with two fluorous tagged thiols and several monomers at room temperature (22 °C and 40 °C). Using the Eyring equation, the activation energies (enthalpies) were calculated, observing a wide range of energy barriers ranging from 28 kJ mol-1 to 108 kJ mol-1 within the same alkene class. Computationally, DFT coupled with the Nudged Elastic Band method was used to calculate the entire reaction coordinate of each monomer reaction using the B97-D3 functional and a hybrid implicit-explicit methanol solvation approach. The thiol-Michael reaction is traditionally rate-limited by the propagation or chain-transfer steps. However, our test case with N-acrylamides and fluorous thiols revealed experimental and computational data produced satisfactory agreement only when we considered a previously unconsidered step that we termed "product decomplexation", which occurs as the product physically dissociates from other co-reactants after chain transfer. Five monomers were investigated to support this finding, capturing a range of functional groups varying in alkyl chain length (methyl to hexyl) and aromaticity (benzyl and ethylenephenyl). Increased substrate alkyl chain length increased activation energy, explained by the inductive effect. Aromatic ring-stacking configurations significantly impacted the activation energy and contributed to improved molecular packing density. Hydrogen-bonding between reactants increased the activation energy emphasizing the rate-limitation of the product decomplexation. Our findings begin to describe a new structure-kinetic relationship for thiol-Michael acceptors to enable further design of reactive monomers for synthetic polymers and biomaterials.


Asunto(s)
Acrilamidas/química , Compuestos de Sulfhidrilo/química , Cinética , Estructura Molecular , Temperatura
4.
Anal Chem ; 91(4): 3118-3124, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30675774

RESUMEN

Biophysical analysis into the mechanism of action of membrane-disrupting antibiotics such as antimicrobial peptides (AMPs) and AMP mimetics is necessary to improve our understanding of this promising but relatively untapped class of antibiotics. We evaluate the impact of cationic nature, specifically the presence of guanidine versus amine functional groups using sequence-defined oligothioetheramides (oligoTEAs). Relative to amines, guanidine groups demonstrated improved antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). To understand the mechanism of action, we evaluated membrane interactions by performing a propidium iodide assay and fluorescence microscopy of supported MRSA mimetic bilayers treated with oligoTEAs. Both studies demonstrated membrane disruption, while fluorescence microscopy showed the formation of lipid aggregates. We further analyzed the mechanism using surface plasmon resonance with a recently developed two-state binding model with loss. Our biophysical analysis points to the importance of lipid aggregation for antibacterial activity and suggests that guanidine groups improve antibacterial activity by increasing the extent of lipid aggregation. Altogether, these results verify and rationalize the importance of guanidines for enhanced antibacterial activity of oligoTEAs, and present biophysical phenomena for the design and analysis of additional membrane-active antibiotics.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Compuestos de Sulfhidrilo/farmacología , Amidas/síntesis química , Amidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Estructura Molecular , Compuestos de Sulfhidrilo/química
5.
J Infect Dis ; 217(1): 82-92, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29029188

RESUMEN

Background: Carbapenem resistance is a critical healthcare challenge worldwide. Particularly concerning is the widespread dissemination of Klebsiella pneumoniae carbapenemase (KPC). Klebsiella pneumoniae harboring blaKPC (KPC-Kpn) is endemic in many areas including the United States, where the epidemic was primarily mediated by the clonal dissemination of Kpn ST258. We postulated that the spread of blaKPC in other regions occurs by different and more complex mechanisms. To test this, we investigated the evolution and dynamics of spread of KPC-Kpn in Colombia, where KPC became rapidly endemic after emerging in 2005. Methods: We sequenced the genomes of 133 clinical isolates recovered from 24 tertiary care hospitals located in 10 cities throughout Colombia, between 2002 (before the emergence of KPC-Kpn) and 2014. Phylogenetic reconstructions and evolutionary mapping were performed to determine temporal and genetic associations between the isolates. Results: Our results indicate that the start of the epidemic was driven by horizontal dissemination of mobile genetic elements carrying blaKPC-2, followed by the introduction and subsequent spread of clonal group 258 (CG258) isolates containing blaKPC-3. Conclusions: The combination of 2 evolutionary mechanisms of KPC-Kpn within a challenged health system of a developing country created the "perfect storm" for sustained endemicity of these multidrug-resistant organisms in Colombia.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Epidemias , Evolución Molecular , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Ciudades/epidemiología , Colombia/epidemiología , ADN Bacteriano/química , ADN Bacteriano/genética , Transmisión de Enfermedad Infecciosa , Transferencia de Gen Horizontal , Humanos , Secuencias Repetitivas Esparcidas , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/aislamiento & purificación , Epidemiología Molecular , Filogenia , Análisis de Secuencia de ADN , Centros de Atención Terciaria , Secuenciación Completa del Genoma
7.
Bioconjug Chem ; 28(4): 907-912, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28191937

RESUMEN

Cleavable and heteromultifunctional cross-linkers have proven critical in a wide range of biological applications. Traditional approaches for synthesizing these linkers suffer from various synthetic and functional limitations. In this work, an efficient sequence-defined synthetic methodology, developed for the assembly of oligothioetheramides, was used to address many of these limitations. Four heterotrifunctional cross-linkers with up to two orthogonal internal cleavage sites were synthesized. These linkers were conjugated to a pair of fluorophores that undergo Förster resonance energy transfer (FRET) and a model protein-human transferrin. Orthogonal bond cleavage was validated by mass spectrometry, fluorescent gel electrophoresis, and confocal microscopy. These studies demonstrate the versatility and biological utility of oligothioetheramides as a new class of multifunctional chemical cross-linkers and biologically relevant fluorescent probes.


Asunto(s)
Amidas/química , Reactivos de Enlaces Cruzados/química , Colorantes Fluorescentes/química , Transferrina/química , Amidas/síntesis química , Compuestos de Boro/química , Reactivos de Enlaces Cruzados/síntesis química , Éteres/síntesis química , Éteres/química , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Microscopía Confocal , Modelos Moleculares
8.
Langmuir ; 32(25): 6468-77, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27268077

RESUMEN

Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and Organosolv (high-purity lignin). The green synthesis process is based on flash precipitation of dissolved lignin polymer, which enabled the formation of nanoparticles in the size range of 45-250 nm. The size evolution of the two types of lignin particles is fitted on the basis of modified diffusive growth kinetics and mass balance dependencies. The surface properties of the nanoparticles are fine-tuned by coating them with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). We analyze how the colloidal stability and dispersion properties of these two types of nanoparticles vary as a function of pH and salinities. The data show that the properties of the nanoparticles are governed by the type of lignin used and the presence of polyelectrolyte surface coating. The coating allows the control of the nanoparticles' surface charge and the extension of their stability into strongly basic regimes, facilitating their potential application at extreme pH conditions.

9.
ACS Chem Biol ; 18(3): 518-527, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36821521

RESUMEN

The impermeable outer membrane of Pseudomonas aeruginosa is bypassed by antibacterial proteins known as S-type pyocins. Because of their properties, pyocins are investigated as a potential new class of antimicrobials against Pseudomonas infections. Their production and modification, however, remain challenging. To address this limitation, we employed automated fast-flow peptide synthesis for the rapid production of a pyocin S2 import domain. The N-terminal domain sequence (PyS2NTD) was synthesized in under 10 h and purified to yield milligram quantities of the desired product. To our knowledge, the 214 amino acid sequence of PyS2NTD is among the longest peptides produced from a "single-shot" synthesis, i.e., made in a single stepwise route without the use of ligation techniques. Biophysical characterization of the PyS2NTD with circular dichroism was consistent with the literature reports. Fluorescently labeled PyS2NTD binds to P. aeruginosa expressing the cognate ferripyoverdine receptor and is taken up into the periplasm. This selective uptake was validated with confocal and super resolution microscopy, flow cytometry, and fluorescence recovery after photobleaching. These modified, synthetic S-type pyocin domains can be used to probe import mechanisms of P. aeruginosa and leveraged to develop selective antimicrobial agents that bypass the outer membrane.


Asunto(s)
Antiinfecciosos , Piocinas , Piocinas/química , Piocinas/metabolismo , Aminoácidos , Antibacterianos/farmacología , Antibacterianos/química , Secuencia de Aminoácidos , Pseudomonas aeruginosa/metabolismo
10.
Commun Chem ; 5(1): 8, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36697587

RESUMEN

Rapid discovery and development of serum-stable, selective, and high affinity peptide-based binders to protein targets are challenging. Angiotensin converting enzyme 2 (ACE2) has recently been identified as a cardiovascular disease biomarker and the primary receptor utilized by the severe acute respiratory syndrome coronavirus 2. In this study, we report the discovery of high affinity peptidomimetic binders to ACE2 via affinity selection-mass spectrometry (AS-MS). Multiple high affinity ACE2-binding peptides (ABP) were identified by selection from canonical and noncanonical peptidomimetic libraries containing 200 million members (dissociation constant, KD = 19-123 nM). The most potent noncanonical ACE2 peptide binder, ABP N1 (KD = 19 nM), showed enhanced serum stability in comparison with the most potent canonical binder, ABP C7 (KD = 26 nM). Picomolar to low nanomolar ACE2 concentrations in human serum were detected selectively using ABP N1 in an enzyme-linked immunosorbent assay. The discovery of serum-stable noncanonical peptidomimetics like ABP N1 from a single-pass selection demonstrates the utility of advanced AS-MS for accelerated development of affinity reagents to protein targets.

11.
ACS Cent Sci ; 7(1): 156-163, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33527085

RESUMEN

The ß-coronavirus SARS-CoV-2 has caused a global pandemic. Affinity reagents targeting the SARS-CoV-2 spike protein are of interest for the development of therapeutics and diagnostics. We used affinity selection-mass spectrometry for the rapid discovery of synthetic high-affinity peptide binders for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. From library screening with 800 million synthetic peptides, we identified three sequences with nanomolar affinities (dissociation constants K d = 80-970 nM) for RBD and selectivity over human serum proteins. Nanomolar RBD concentrations in a biological matrix could be detected using the biotinylated lead peptide in ELISA format. These peptides do not compete for ACE2 binding, and their site of interaction on the SARS-CoV-2-spike-RBD might be unrelated to the ACE2 binding site, making them potential orthogonal reagents for sandwich immunoassays. These findings serve as a starting point for the development of SARS-CoV-2 diagnostics or conjugates for virus-directed delivery of therapeutics.

12.
Macromol Biosci ; 18(11): e1800241, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30238615

RESUMEN

Antimicrobial peptides are promising alternatives to traditional antibiotics but their translational potential is limited due to rapid degradation by serum proteases. Recently, a number of peptidomimetics with backbones resistant to proteolysis have been synthesized and their antimicrobial potential evaluated as a function of their hydrophobic to cationic ratio. However, these mimetics also have a fixed backbone thus making it difficult to isolate the effect of backbone hydrophobic composition and sequence. In this work, advantage is taken of the oligothioetheramide (oligoTEA) synthetic strategy that allows for precise control over backbone and pendant group placement to systematically study the effect of backbone hydrophobic sequence while keeping pendant group constant. Biophysical data acquired with a set of constitutional oligoTEA isomers show that backbone hydrophobic sequence, that is, local hydrophobicity, affects the mode of oligoTEA interaction with lipid bilayers. This differential interaction among the constitutionally isomeric oligoTEAs is manifested in their antibacterial activities and points to the possibility of using backbone hydrophobic sequence to tune antibacterial potency and selectivity.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Relación Estructura-Actividad
13.
Commun Biol ; 1: 220, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534612

RESUMEN

Cationic charge and hydrophobicity have long been understood to drive the potency and selectivity of antimicrobial peptides (AMPs). However, these properties alone struggle to guide broad success in vivo, where AMPs must differentiate bacterial and mammalian cells, while avoiding complex barriers. New parameters describing the biophysical processes of membrane disruption could provide new opportunities for antimicrobial optimization. In this work, we utilize oligothioetheramides (oligoTEAs) to explore the membrane-targeting mechanism of oligomers, which have the same cationic charge and hydrophobicity, yet show a unique ~ 10-fold difference in antibacterial potency. Solution-phase characterization reveals little difference in structure and dynamics. However, fluorescence microscopy of oligomer-treated Staphylococcus aureus mimetic membranes shows multimeric lipid aggregation that correlates with biological activity and helps establish a framework for the kinetic mechanism of action. Surface plasmon resonance supports the kinetic framework and supports lipid aggregation as a driver of antimicrobial function.

15.
Macromolecules ; 50(21): 8731-8738, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-29386690

RESUMEN

Nature has long demonstrated the importance of chemical sequence to induce structure and tune physical interactions. Investigating macromolecular structure and dynamics is paramount to understand macromolecular binding and target recognition. To that end, we have synthesized and characterized flexible sulfonated oligothioetheramides (oligo-TEAs) by variable temperature pulse field gradient (PFG) NMR, double electron-electron resonance (DEER), and molecular dynamics (MD) simulations to capture their room temperature structure and dynamics in water. We have examined the contributions of synthetic length (2-12mer), pendant group charge, and backbone hydrophobicity. We observe significant entropic collapse, driven in part by backbone hydrophobicity. Analysis of individual monomer contributions revealed larger changes due to the backbone compared to pendant groups. We also observe screening of intramolecular electrostatic repulsions. Finally, we comment on the combination of DEER and PFG NMR measurements via Stokes-Einstein-Sutherland diffusion theory. Overall, this sensitive characterization holds promise to enable de novo development of macromolecular structure and sequence-structure-function relationships with flexible, but biologically functional macromolecules.

17.
Nat Nanotechnol ; 10(9): 817-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26167765

RESUMEN

Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Lignina/química , Nanopartículas/química , Plata/química , Plata/farmacología , Animales , Antiinfecciosos/toxicidad , Bacterias/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Embrión no Mamífero/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Lignina/toxicidad , Viabilidad Microbiana/efectos de los fármacos , Nanopartículas/toxicidad , Ratas , Plata/toxicidad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA