Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(3): e3002535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470868

RESUMEN

Light enables vision and exerts widespread effects on physiology and behavior, including regulating circadian rhythms, sleep, hormone synthesis, affective state, and cognitive processes. Appropriate lighting in animal facilities may support welfare and ensure that animals enter experiments in an appropriate physiological and behavioral state. Furthermore, proper consideration of light during experimentation is important both when it is explicitly employed as an independent variable and as a general feature of the environment. This Consensus View discusses metrics to use for the quantification of light appropriate for nonhuman mammals and their application to improve animal welfare and the quality of animal research. It provides methods for measuring these metrics, practical guidance for their implementation in husbandry and experimentation, and quantitative guidance on appropriate light exposure for laboratory mammals. The guidance provided has the potential to improve data quality and contribute to reduction and refinement, helping to ensure more ethical animal use.


Asunto(s)
Experimentación Animal , Animales de Laboratorio , Animales , Reproducibilidad de los Resultados , Ritmo Circadiano/fisiología , Mamíferos
2.
Nature ; 581(7807): 147-151, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405022

RESUMEN

Asteroseismology probes the internal structures of stars by using their natural pulsation frequencies1. It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done successfully for many classes of pulsators, including low-mass solar-type stars2, red giants3, high-mass stars4 and white dwarfs5. However, a large group of pulsating stars of intermediate mass-the so-called δ Scuti stars-have rich pulsation spectra for which systematic mode identification has not hitherto been possible6,7. This arises because only a seemingly random subset of possible modes are excited and because rapid rotation tends to spoil regular patterns8-10. Here we report the detection of remarkably regular sequences of high-frequency pulsation modes in 60 intermediate-mass main-sequence stars, which enables definitive mode identification. The space motions of some of these stars indicate that they are members of known associations of young stars, as confirmed by modelling of their pulsation spectra.

3.
Proc Natl Acad Sci U S A ; 120(42): e2301608120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812713

RESUMEN

Experimental and interventional studies show that light can regulate sleep timing and sleepiness while awake by setting the phase of circadian rhythms and supporting alertness. The extent to which differences in light exposure explain variations in sleep and sleepiness within and between individuals in everyday life remains less clear. Here, we establish a method to address this deficit, incorporating an open-source wearable wrist-worn light logger (SpectraWear) and smartphone-based online data collection. We use it to simultaneously record longitudinal light exposure (in melanopic equivalent daylight illuminance), sleep timing, and subjective alertness over seven days in a convenience sample of 59 UK adults without externally imposed circadian challenge (e.g., shift work or jetlag). Participants reliably had strong daily rhythms in light exposure but frequently were exposed to less light during the daytime and more light in pre-bedtime and sleep episodes than recommended [T. M. Brown et al., PLoS Biol. 20, e3001571 (2022)]. Prior light exposure over several hours was associated with lower subjective sleepiness with, in particular, brighter light in the late sleep episode and after wake linked to reduced early morning sleepiness (sleep inertia). Higher pre-bedtime light exposure was associated with longer sleep onset latency. Early sleep timing was correlated with more reproducible and robust daily patterns of light exposure and higher daytime/lower night-time light exposure. Our study establishes a method for collecting longitudinal sleep and health/performance data in everyday life and provides evidence of associations between light exposure and important determinants of sleep health and performance.


Asunto(s)
Melatonina , Vigilia , Adulto , Humanos , Somnolencia , Sueño/fisiología , Ritmo Circadiano/fisiología , Reino Unido
4.
PLoS Biol ; 20(3): e3001571, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35298459

RESUMEN

Ocular light exposure has important influences on human health and well-being through modulation of circadian rhythms and sleep, as well as neuroendocrine and cognitive functions. Prevailing patterns of light exposure do not optimally engage these actions for many individuals, but advances in our understanding of the underpinning mechanisms and emerging lighting technologies now present opportunities to adjust lighting to promote optimal physical and mental health and performance. A newly developed, international standard provides a SI-compliant way of quantifying the influence of light on the intrinsically photosensitive, melanopsin-expressing, retinal neurons that mediate these effects. The present report provides recommendations for lighting, based on an expert scientific consensus and expressed in an easily measured quantity (melanopic equivalent daylight illuminance (melaponic EDI)) defined within this standard. The recommendations are supported by detailed analysis of the sensitivity of human circadian, neuroendocrine, and alerting responses to ocular light and provide a straightforward framework to inform lighting design and practice.


Asunto(s)
Sueño , Vigilia , Adulto , Ritmo Circadiano/fisiología , Cognición , Ojo , Humanos , Iluminación , Sueño/fisiología , Vigilia/fisiología
5.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34031246

RESUMEN

Mammalian circadian rhythms are orchestrated by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN), which receives information about the 24 h light-dark cycle from the retina. The accepted function of this light signal is to reset circadian phase in order to ensure appropriate synchronization with the celestial day. Here, we ask whether light also impacts another key property of the circadian oscillation, its amplitude. To this end, we measured circadian rhythms in behavioral activity, body temperature, and SCN electrophysiological activity in the diurnal murid rodent Rhabdomys pumilio following stable entrainment to 12:12 light-dark cycles at four different daytime intensities (ranging from 18 to 1,900 lx melanopic equivalent daylight illuminance). R. pumilio showed strongly diurnal activity and body temperature rhythms in all conditions, but measures of rhythm robustness were positively correlated with daytime irradiance under both entrainment and subsequent free run. Whole-cell and extracellular recordings of electrophysiological activity in ex vivo SCN revealed substantial differences in electrophysiological activity between dim and bright light conditions. At lower daytime irradiance, daytime peaks in SCN spontaneous firing rate and membrane depolarization were substantially depressed, leading to an overall marked reduction in the amplitude of circadian rhythms in spontaneous activity. Our data reveal a previously unappreciated impact of daytime light intensity on SCN physiology and the amplitude of circadian rhythms and highlight the potential importance of daytime light exposure for circadian health.


Asunto(s)
Ritmo Circadiano , Luz , Mamíferos/fisiología , Animales , Neuronas/fisiología , Reproducibilidad de los Resultados , Núcleo Supraquiasmático/fisiología
6.
J Pineal Res ; 70(4): e12735, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33793975

RESUMEN

Intrinsically photosensitive retinal ganglion cells convey intrinsic, melanopsin-based, photoreceptive signals alongside those produced by rods and cones to the suprachiasmatic nucleus (SCN) circadian clock. To date, experimental data suggest that melanopsin plays a more significant role in measuring ambient light intensity than cone photoreception. Such studies have overwhelmingly used diffuse light stimuli, whereas light intensity in the world around us varies across space and time. Here, we investigated the extent to which melanopsin or cone signals support circadian irradiance measurements in the presence of naturalistic spatiotemporal variations in light intensity. To address this, we first presented high- and low-contrast movies to anaesthetised mice whilst recording extracellular electrophysiological activity from the SCN. Using a mouse line with altered cone sensitivity (Opn1mwR mice) and multispectral light sources we then selectively varied irradiance of the movies for specific photoreceptor classes. We found that steps in melanopic irradiance largely account for the light induced-changes in SCN activity over a range of starting light intensities and in the presence of spatiotemporal modulation. By contrast, cone-directed changes in irradiance only influenced SCN activity when spatiotemporal contrast was low. Consistent with these findings, under housing conditions where we could independently adjust irradiance for melanopsin versus cones, the period lengthening effects of constant light on circadian rhythms in behaviour were reliably determined by melanopic irradiance, regardless of irradiance for cones. These data add to the growing evidence that modulating effective irradiance for melanopsin is an effective strategy for controlling the circadian impact of light.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Luz/efectos adversos , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Opsinas de Bastones/efectos de la radiación , Núcleo Supraquiasmático/fisiología , Animales , Conducta Animal/efectos de la radiación , Ritmo Circadiano/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
J Pineal Res ; 71(1): e12719, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33512714

RESUMEN

Light influences diverse aspects of human physiology and behaviour including neuroendocrine function, the circadian system and sleep. A role for melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) in driving such effects is well established. However, rod and/or cone signals routed through ipRGCs could also influence "non-visual" spectral sensitivity. In humans, this has been most extensively studied for acute, light-dependent, suppression of nocturnal melatonin production. Of the published action spectra for melatonin suppression, one demonstrates a spectral sensitivity consistent with that expected for melanopsin while our own (using briefer 30 minute light exposures) displays very high sensitivity to short wavelength light, suggesting a contribution of S-cones. To clarify that possibility, six healthy young male participants were each exposed to 30 minutes of five irradiances of 415 nm monochromatic light (1-40 µW/cm2 ) across different nights. These data were then combined with the original action spectrum. The aggregated data are incompatible with the involvement of any single-opsin and multi-opsin models based on the original action spectrum (including Circadian Stimulus) fail to predict the responses to 415 nm stimuli. Instead, the extended action spectrum can be most simply approximated by an ~2:1 combination of melanopsin and S-cone signals. Such a model also better describes the magnitude of melatonin suppression observed in other studies using an equivalent 30 minute mono- or polychromatic light paradigm but not those using longer (90 minute) light exposures. In sum, these data provide evidence for an initial S-cone contribution to melatonin suppression that rapidly decays under extended light exposure.


Asunto(s)
Melatonina/biosíntesis , Células Fotorreceptoras Retinianas Conos/metabolismo , Adulto , Ritmo Circadiano/fisiología , Humanos , Luz , Masculino , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Opsinas de Bastones/metabolismo
8.
BMC Biol ; 18(1): 134, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32998726

RESUMEN

BACKGROUND: Daily variations in mammalian physiology are under control of a central clock in the suprachiasmatic nucleus (SCN). SCN timing signals are essential for coordinating cellular clocks and associated circadian variations in cell and tissue function across the body; however, direct SCN projections primarily target a restricted set of hypothalamic and thalamic nuclei involved in physiological and behavioural control. The role of the SCN in driving rhythmic activity in these targets remains largely unclear. Here, we address this issue via multielectrode recording and manipulations of SCN output in adult mouse brain slices. RESULTS: Electrical stimulation identifies cells across the midline hypothalamus and ventral thalamus that receive inhibitory input from the SCN and/or excitatory input from the retina. Optogenetic manipulations confirm that SCN outputs arise from both VIP and, more frequently, non-VIP expressing cells and that both SCN and retinal projections almost exclusively target GABAergic downstream neurons. The majority of midline hypothalamic and ventral thalamic neurons exhibit circadian variation in firing and those receiving inhibitory SCN projections consistently exhibit peak activity during epochs when SCN output is low. Physical removal of the SCN confirms that neuronal rhythms in ~ 20% of the recorded neurons rely on central clock input but also reveals many neurons that can express circadian variation in firing independent of any SCN input. CONCLUSIONS: We identify cell populations across the midline hypothalamus and ventral thalamus exhibiting SCN-dependent and independent rhythms in neural activity, providing new insight into the mechanisms by which the circadian system generates daily physiological rhythms.


Asunto(s)
Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Núcleo Supraquiasmático/fisiología , Tálamo/fisiología , Animales , Ratones
9.
J Exp Biol ; 223(Pt 11)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32371443

RESUMEN

An animal's temporal niche - the time of day at which it is active - is known to drive a variety of adaptations in the visual system. These include variations in the topography, spectral sensitivity and density of retinal photoreceptors, and changes in the eye's gross anatomy and spectral transmission characteristics. We have characterised visual spectral sensitivity in the murid rodent Rhabdomys pumilio (the four-striped grass mouse), which is in the same family as (nocturnal) mice and rats but exhibits a strong diurnal niche. As is common in diurnal species, the R. pumilio lens acts as a long-pass spectral filter, providing limited transmission of light <400 nm. Conversely, we found strong sequence homologies with the R. pumilio SWS and MWS opsins and those of related nocturnal species (mice and rats) whose SWS opsins are maximally sensitive in the near-UV. We continued to assess in vivo spectral sensitivity of cone vision using electroretinography and multi-channel recordings from the visual thalamus. These revealed that responses across the human visible range could be adequately described by those of a single pigment (assumed to be MWS opsin) maximally sensitive at ∼500 nm, but that sensitivity in the near-UV required inclusion of a second pigment whose peak sensitivity lay well into the UV range (λmax<400 nm, probably ∼360 nm). We therefore conclude that, despite the UV-filtering effects of the lens, R. pumilio retains an SWS pigment with a UV-A λmax In effect, this somewhat paradoxical combination of long-pass lens and UV-A λmax results in narrow-band sensitivity for SWS cone pathways in the UV-A range.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Visión Ocular , Animales , Ratones , Opsinas , Células Fotorreceptoras de Vertebrados , Ratas , Opsinas de Bastones
10.
J Pineal Res ; 69(1): e12655, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32248548

RESUMEN

Ocular light drives a range of nonvisual responses in humans including suppression of melatonin secretion and circadian phase resetting. These responses are driven by intrinsically photosensitive retinal ganglion cells (ipRGCs) which combine intrinsic, melanopsin-based, phototransduction with extrinsic rod/cone-mediated signals. As a result of this arrangement, it has remained unclear how best to quantify light to predict its nonvisual effects. To address this, we analysed data from nineteen different laboratory studies that measured melatonin suppression, circadian phase resetting and/or alerting responses in humans to a wide array of stimulus types, intensities and durations with or without pupil dilation. Using newly established SI-compliant metrics to quantify ipRGC-influenced responses to light, we show that melanopic illuminance consistently provides the best available predictor for responses of the human circadian system. In almost all cases, melanopic illuminance is able to fully account for differences in sensitivity to stimuli of varying spectral composition, acting to drive responses that track variations in illumination characteristic of those encountered over civil twilight (~1-1000 lux melanopic equivalent daylight illuminance). Collectively, our data demonstrate widespread utility of melanopic illuminance as a metric for predicting the circadian impact of environmental illumination. These data therefore provide strong support for the use of melanopic illuminance as the basis for guidelines that seek to regulate light exposure to benefit human health and to inform future lighting design.


Asunto(s)
Ritmo Circadiano , Luz , Melatonina/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Adulto , Femenino , Humanos , Iluminación , Masculino , Persona de Mediana Edad
11.
J Phys Chem A ; 123(41): 8776-8786, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31513404

RESUMEN

Chemical activation experiments and computational methods have been used to study the unimolecular reactions of C2H5CH2Br and C2D5CHFBr with 90 and 93 kcal mol-1 of vibrational energy, respectively. The four-centered elimination reactions of HBr and DBr are the dominant reactions; however, 2,1-DF, 1,1-HBr, and 1,1-HF reactions are also observed from C2D5CHFBr. The main focus was to search for the role of the C2D5(F)C:HBr adduct in the 1,1-HBr elimination for comparison with carbene adducts in 1,1-HX(Y) elimination from RCHXY (X,Y = Cl and F) molecules. Models of transition states and molecules from electronic structure calculations were used in statistical calculations of the rate constants to assign threshold energies for each reaction based on the experimental rate constants. The threshold energy for 2,1-HBr elimination from 1-bromopropane is 50 kcal mol-1, which is in basic agreement with thermal activation experiments. Comparison of the 2,1-DBr and 2,1-HBr rate constants permits discussion of the kinetic isotope effects and the effect of F atom substitution on the threshold energy for 2,1-HBr elimination. Although CD3CD═CDF from 1,1-HBr elimination of C2D5CHFBr followed by D atom migration is an experimentally observed product, dissociation of the C2D5(F)C:HBr adduct may be the rate-limiting step rather than crossing the barrier associated with the transition state for 1,1-HBr elimination. The calculated dissociation energies of C2H5(X)C:HF adducts are 9.9, 9.3, and 9.0 kcal mol-1 for X = F, Cl, and Br, and the values for C2H5(F)C:HX are 9.9, 6.4, and ∼4.9 kcal mol-1.

12.
BMC Biol ; 16(1): 83, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30064443

RESUMEN

BACKGROUND: Intrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice. RESULTS: We first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3-/-) or melanopsin (Opn1mwR; Opn4-/-). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice. CONCLUSION: Our data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs-the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control.


Asunto(s)
Visión de Colores/fisiología , Área Pretectal/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Opsinas de Bastones/metabolismo , Animales , Masculino , Ratones , Estimulación Luminosa
13.
PLoS Biol ; 13(4): e1002127, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25884537

RESUMEN

Twilight is characterised by changes in both quantity ("irradiance") and quality ("colour") of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.


Asunto(s)
Relojes Circadianos/fisiología , Color , Animales , Ratones , Ratones Noqueados , Estimulación Luminosa , Opsinas de Bastones/fisiología , Núcleo Supraquiasmático/fisiología
14.
J Phys Chem A ; 122(43): 8446-8457, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261723

RESUMEN

The five unimolecular HX and DX (X = F, Cl) elimination pathways of CD2ClCHFCl* were examined using a chemical activation technique; the molecules were generated with 92 kcal mol-1 of vibrational energy in a room-temperature bath gas by a combination of CD2Cl and CHFCl radicals. The total unimolecular rate constant was 9.7 × 107 s-1, and branching fractions for each channel were 0.52 (2,1-DCl), 0.29 (1,1-HCl), 0.10 (2,1-DF), 0.07 (1,1-HF), and 0.02 (1,2-HCl). Comparison of the individual experimental rate constants to calculated statistical rate constants gave threshold energies for each process as 63, 72, 66, 73, and 70 kcal mol-1, listed in the same order as the branching fractions. The 1,1-HCl and 1,1-HF reactions gave carbenes, CD2Cl(F)C: and CD2Cl(Cl)C:, respectively, as products, which have hydrogen-bonded complexes with HCl or HF in the exit channel of the potential energy surface. These carbenes have energy in excess of the threshold energy for D atom migration to give CDCl═CDF and CDCl═CDCl, and the subsequent cis-trans isomerization rates of the dihaloethenes can provide information about energy disposal by the 1,1-HX elimination reactions. Electronic structure calculations provide information for transition states of CD2ClCHFCl and hydrogen-bonded complexes of carbenes with HF and HCl. In addition, D atom migration in both free carbenes and in complexes formed by the carbene hydrogen bonding to HCl or HF is explored.

15.
Proc Natl Acad Sci U S A ; 112(42): E5734-43, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438865

RESUMEN

Twice a day, at dawn and dusk, we experience gradual but very high amplitude changes in background light intensity (irradiance). Although we perceive the associated change in environmental brightness, the representation of such very slow alterations in irradiance by the early visual system has been little studied. Here, we addressed this deficit by recording electrophysiological activity in the mouse dorsal lateral geniculate nucleus under exposure to a simulated dawn. As irradiance increased we found a widespread enhancement in baseline firing that extended to units with ON as well as OFF responses to fast luminance increments. This change in baseline firing was equally apparent when the slow irradiance ramp appeared alone or when a variety of higher-frequency artificial or natural visual stimuli were superimposed upon it. Using a combination of conventional knockout, chemogenetic, and receptor-silent substitution manipulations, we continued to show that, over higher irradiances, this increase in firing originates with inner-retinal melanopsin photoreception. At the single-unit level, irradiance-dependent increases in baseline firing were strongly correlated with improvements in the amplitude of responses to higher-frequency visual stimuli. This in turn results in an up to threefold increase in single-trial reliability of fast visual responses. In this way, our data indicate that melanopsin drives a generalized increase in dorsal lateral geniculate nucleus excitability as dawn progresses that both conveys information about changing background light intensity and increases the signal:noise for fast visual responses.


Asunto(s)
Cuerpos Geniculados/fisiología , Opsinas de Bastones/fisiología , Visión Ocular , Animales , Ratones , Ratones Transgénicos
16.
J Physiol ; 595(11): 3621-3649, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28217893

RESUMEN

KEY POINTS: Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. ABSTRACT: Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.


Asunto(s)
Neuronas GABAérgicas/fisiología , Neuronas Retinianas/fisiología , Neuronas del Núcleo Supraquiasmático/fisiología , Animales , Ritmo Circadiano , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Visión Ocular
17.
J Physiol ; 595(3): 865-881, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27501052

RESUMEN

KEY POINTS: Using in vivo electrophysiology, we find that a subset of whisker-responsive neurons in the ventral posterior medial region (VPM) respond to visual stimuli. These light-responsive neurons in the VPM are particularly sensitive to optic flow. Presentation of optic flow stimuli modulates the amplitude of concurrent whisker responses. Visual information reaches the VPM via a circuit encompassing the visual cortex. These data represent a new example of cross-modal integration in the primary sensory thalamus. ABSTRACT: Sensory signals reach the cortex via sense-specific thalamic nuclei. Here we report that neurons in the primary sensory thalamus of the mouse vibrissal system (the ventral posterior medial region; VPM) can be excited by visual as well as whisker stimuli. Using extracellular electrophysiological recordings from anaesthetized mice we first show that simple light steps can excite a subset of VPM neurons. We then test the ability of the VPM to respond to spatial patterns and show that many units are excited by visual motion in a direction-selective manner. Coherent movement of multiple objects (an artificial recreation of 'optic flow' that would usually occur during head rotations or body movements) best engages this visual motion response. We next show that, when co-applied with visual stimuli, the magnitude of responses to whisker deflections is highest in the presence of optic flow going in the opposite direction. Importantly, whisker response amplitude is also modulated by presentation of a movie recreating the mouse's visual experience during natural exploratory behaviour. We finally present functional and anatomical data indicating a functional connection (probably multisynaptic) from the primary visual cortex to VPM. These data provide a rare example of multisensory integration occurring at the level of the sensory thalamus, and provide evidence for dynamic regulation of whisker responses according to visual experience.


Asunto(s)
Núcleos Talámicos/fisiología , Vibrisas/fisiología , Animales , Masculino , Ratones Endogámicos C57BL , Estimulación Física , Tiempo de Reacción
18.
Nature ; 471(7340): 608-11, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21455175

RESUMEN

Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼ 50 seconds) and those that are also burning helium (period spacing ∼ 100 to 300 seconds).

19.
J Physiol ; 594(7): 1911-29, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26842995

RESUMEN

KEY POINTS: The lateral posterior and posterior thalamic nuclei have been implicated in aspects of visually guided behaviour and reflex responses to light, including those dependent on melanopsin photoreception. Here we investigated the extent and basic properties of visually evoked activity across the mouse lateral posterior and posterior thalamus. We show that a subset of retinal projections to these regions derive from melanopsin-expressing retinal ganglion cells and find many cells that exhibit melanopsin-dependent changes in firing. We also show that subsets of cells across these regions integrate signals from both eyes in various ways and that, within the lateral posterior thalamus, visual responses are retinotopically ordered. ABSTRACT: In addition to the primary thalamocortical visual relay in the lateral geniculate nuclei, a number of other thalamic regions contribute to aspects of visual processing. Thus, the lateral posterior thalamic nuclei (LP/pulvinar) appear important for various functions including determining visual saliency, visually guided behaviours and, alongside dorsal portions of the posterior thalamic nuclei (Po), multisensory processing of information related to aversive stimuli. However, despite the growing importance of mice as a model for understanding visual system organisation, at present we know very little about the basic visual response properties of cells in the mouse LP or Po. Prompted by earlier suggestions that melanopsin photoreception might be important for certain functions of these nuclei, we first employ specific viral tracing to show that a subset of retinal projections to the LP derive from melanopsin-expressing retinal ganglion cells. We next use multielectrode electrophysiology to demonstrate that LP and dorsal Po cells exhibit a variety of responses to simple visual stimuli including two distinct classes that express melanopsin-dependent changes in firing (together comprising ∼25% of neurons we recorded). We also show that subgroups of LP/Po cells integrate signals from both eyes in various ways and that, within the LP, visual responses are retinotopically ordered. Together our data reveal a diverse population of visually responsive neurons across the LP and dorsal Po whose properties align with some of the established functions of these nuclei and suggest new possible routes through which melanopsin photoreception could contribute to reflex light responses and/or higher order visual processing.


Asunto(s)
Potenciales Evocados Visuales , Núcleos Talámicos Laterales/fisiología , Núcleos Talámicos Posteriores/fisiología , Células Ganglionares de la Retina/metabolismo , Animales , Núcleos Talámicos Laterales/citología , Ratones , Ratones Endogámicos C57BL , Núcleos Talámicos Posteriores/citología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Vías Visuales/citología , Vías Visuales/fisiología
20.
J Exp Biol ; 219(Pt 12): 1779-92, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307539

RESUMEN

Circadian clocks are a near-ubiquitous feature of biology, allowing organisms to optimise their physiology to make the most efficient use of resources and adjust behaviour to maximise survival over the solar day. To fulfil this role, circadian clocks require information about time in the external world. This is most reliably obtained by measuring the pronounced changes in illumination associated with the earth's rotation. In mammals, these changes are exclusively detected in the retina and are relayed by direct and indirect neural pathways to the master circadian clock in the hypothalamic suprachiasmatic nuclei. Recent work reveals a surprising level of complexity in this sensory control of the circadian system, including the participation of multiple photoreceptive pathways conveying distinct aspects of visual and/or time-of-day information. In this Review, I summarise these important recent advances, present hypotheses as to the functions and neural origins of these sensory signals, highlight key challenges for future research and discuss the implications of our current knowledge for animals and humans in the modern world.


Asunto(s)
Relojes Circadianos , Hipotálamo/fisiología , Mamíferos/fisiología , Retina/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA