Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 20(1): e1011852, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236791

RESUMEN

Conventional antiviral memory CD4 T cells typically arise during the first two weeks of acute infection. Unlike most viruses, cytomegalovirus (CMV) exhibits an extended persistent replication phase followed by lifelong latency accompanied with some gene expression. We show that during mouse CMV (MCMV) infection, CD4 T cells recognizing an epitope derived from the viral M09 protein only develop after conventional memory T cells have already peaked and contracted. Ablating these CD4 T cells by mutating the M09 genomic epitope in the MCMV Smith strain, or inducing them by introducing the epitope into the K181 strain, resulted in delayed or enhanced control of viral persistence, respectively. These cells were shown to be unique compared to their conventional memory counterparts; producing higher IFNγ and IL-2 and lower IL-10 levels. RNAseq analyses revealed them to express distinct subsets of effector genes as compared to classical CD4 T cells. Additionally, when M09 cells were induced by epitope vaccination they significantly enhanced protection when compared to conventional CD4 T cells alone. These data show that late-rising CD4 T cells are a unique memory subset with excellent protective capacities that display a development program strongly differing from the majority of memory T cells.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Animales , Ratones , Linfocitos T CD4-Positivos , Epítopos , Glándulas Salivales , Linfocitos T CD8-positivos
2.
Circulation ; 142(13): 1279-1293, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32703007

RESUMEN

BACKGROUND: Throughout the inflammatory response that accompanies atherosclerosis, autoreactive CD4+ T-helper cells accumulate in the atherosclerotic plaque. Apolipoprotein B100 (apoB), the core protein of low-density lipoprotein, is an autoantigen that drives the generation of pathogenic T-helper type 1 (TH1) cells with proinflammatory cytokine secretion. Clinical data suggest the existence of apoB-specific CD4+ T cells with an atheroprotective, regulatory T cell (Treg) phenotype in healthy individuals. Yet, the function of apoB-reactive Tregs and their relationship with pathogenic TH1 cells remain unknown. METHODS: To interrogate the function of autoreactive CD4+ T cells in atherosclerosis, we used a novel tetramer of major histocompatibility complex II to track T cells reactive to the mouse self-peptide apo B978-993 (apoB+) at the single-cell level. RESULTS: We found that apoB+ T cells build an oligoclonal population in lymph nodes of healthy mice that exhibit a Treg-like transcriptome, although only 21% of all apoB+ T cells expressed the Treg transcription factor FoxP3 (Forkhead Box P3) protein as detected by flow cytometry. In single-cell RNA sequencing, apoB+ T cells formed several clusters with mixed TH signatures that suggested overlapping multilineage phenotypes with pro- and anti-inflammatory transcripts of TH1, T helper cell type 2 (TH2), and T helper cell type 17 (TH17), and of follicular-helper T cells. ApoB+ T cells were increased in mice and humans with atherosclerosis and progressively converted into pathogenic TH1/TH17-like cells with proinflammatory properties and only a residual Treg transcriptome. Plaque T cells that expanded during progression of atherosclerosis consistently showed a mixed TH1/TH17 phenotype in single-cell RNA sequencing. In addition, we observed a loss of FoxP3 in a fraction of apoB+ Tregs in lineage tracing of hyperlipidemic Apoe-/- mice. In adoptive transfer experiments, converting apoB+ Tregs failed to protect from atherosclerosis. CONCLUSIONS: Our results demonstrate an unexpected mixed phenotype of apoB-reactive autoimmune T cells in atherosclerosis and suggest an initially protective autoimmune response against apoB with a progressive derangement in clinical disease. These findings identify apoB autoreactive Tregs as a novel cellular target in atherosclerosis.


Asunto(s)
Apolipoproteína B-100/inmunología , Aterosclerosis/inmunología , Autoinmunidad , Linfocitos T Reguladores/inmunología , Animales , Apolipoproteína B-100/genética , Aterosclerosis/genética , Ratones , Ratones Noqueados para ApoE , Linfocitos T Reguladores/patología
3.
Nat Cell Biol ; 25(6): 877-891, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231163

RESUMEN

Although mucosal-associated invariant T (MAIT) cells provide rapid, innate-like responses, they are not pre-set, and memory-like responses have been described for MAIT cells following infections. The importance of metabolism for controlling these responses, however, is unknown. Here, following pulmonary immunization with a Salmonella vaccine strain, mouse MAIT cells expanded as separate CD127-Klrg1+ and CD127+Klrg1- antigen-adapted populations that differed in terms of their transcriptome, function and localization in lung tissue. These populations remained altered from steady state for months as stable, separate MAIT cell lineages with enhanced effector programmes and divergent metabolism. CD127+ MAIT cells engaged in an energetic, mitochondrial metabolic programme, which was critical for their maintenance and IL-17A synthesis. This programme was supported by high fatty acid uptake and mitochondrial oxidation and relied on highly polarized mitochondria and autophagy. After vaccination, CD127+ MAIT cells protected mice against Streptococcus pneumoniae infection. In contrast, Klrg1+ MAIT cells had dormant but ready-to-respond mitochondria and depended instead on Hif1a-driven glycolysis to survive and produce IFN-γ. They responded antigen independently and participated in protection from influenza virus. These metabolic dependencies may enable tuning of memory-like MAIT cell responses for vaccination and immunotherapies.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Ratones , Animales , Células T Invariantes Asociadas a Mucosa/metabolismo , Pulmón
4.
Front Cardiovasc Med ; 9: 1076808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684560

RESUMEN

Atherosclerotic cardiovascular diseases are the major cause of death worldwide. CD4 T cells responding to Apolipoprotein B (ApoB), the core protein of most lipoproteins, have been identified as critical disease modulators. In healthy individuals, ApoB-reactive (ApoB+) CD4 T cells are mostly regulatory T cells (Tregs), which exert anti-inflammatory effects. Yet, they may obtain pro-inflammatory features and thus become proatherogenic. Evidence from animal studies suggests that vaccination against certain major histocompatibility complex (MHC) II-binding ApoB peptides induces an expansion of ApoB+ Tregs and thus confers atheroprotection. To date, in-depth phenotyping of vaccine-expanded ApoB+ T cells has not yet been performed. To this end, we vaccinated C57BL/6J mice with the ApoB-peptide P6 (ApoB978-993 TGAYSNASSTESASY) and performed single-cell RNA sequencing of tetramer-sorted P6+ T cells. P6+ cells were clonally expanded (one major, two minor clones) and formed a transcriptional cluster distinct from clusters mainly containing non-expanded P6+ and P6- cells. Transcriptomic profiling revealed that most expanded P6+ cells had a strong Treg signature and highly expressed genes mediating suppressive functions. Yet, some expanded P6+ cells only had a residual Treg signature and expressed genes related to T helper 1 (TH1) cells, which are proatherogenic. Modeling the T cell receptor (TCR) and P6:MHC-II interaction showed that only three amino acid residues in the α and ß chain contact the P6 peptide in the MHC-II groove and thus determine the specificity of this TCR to P6. Our data begin to reveal the vaccination-induced response to an ApoB epitope.

5.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208480

RESUMEN

The herpes virus entry mediator (HVEM) delivers a negative signal to T cells mainly through the B and T lymphocyte attenuator (BTLA) molecule. Thus, HVEM/BTLA may represent a novel immune checkpoint during an anti-tumor immune response. However, a formal demonstration that HVEM can represent a target for cancer immunotherapy is still lacking. Here, we first showed that HVEM and BTLA mRNA expression levels were associated with a worse progression-free interval in patients with prostate adenocarcinomas, indicating a detrimental role for the HVEM/BTLA immune checkpoint during prostate cancer progression. We then showed that administration of a monoclonal antibody to human HVEM resulted in a twofold reduction in the growth of a prostate cancer cell line in NOD.SCID.gc-null mice reconstituted with human T cells. Using CRISPR/Cas9, we showed that the therapeutic effect of the mAb depended on HVEM expression by the tumor, with no effect on graft vs. host disease or activation of human T cells in the spleen. In contrast, the proliferation and number of tumor-infiltrating leukocytes increased following treatment, and depletion of CD8+ T cells partly alleviated treatment's efficacy. The expression of genes belonging to various T cell activation pathways was enriched in tumor-infiltrating leukocytes, whereas genes associated with immuno-suppressive pathways were decreased, possibly resulting in modifications of leukocyte adhesion and motility. Finally, we developed a simple in vivo assay in humanized mice to directly demonstrate that HVEM expressed by the tumor is an immune checkpoint for T cell-mediated tumor control. Our results show that targeting HVEM is a promising strategy for prostate cancer immunotherapy.

6.
Stem Cells Transl Med ; 8(9): 911-924, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30924311

RESUMEN

The positive effects of therapeutic human allogeneic cardiac stem/progenitor cells (hCPC) in terms of cardiac repair/regeneration are very likely mediated by paracrine effects. Our previous studies revealed the advantageous immune interactions of allogeneic hCPC and proposed them as part of the positive paracrine effects occurring upon their application postmyocardial infarction (MI). Currently, extracellular vesicles/exosomes (EV/Exs) released by stem/progenitor cells are also proposed as major mediators of paracrine effects of therapeutic cells. Along this line, we evaluated contribution of EV/Exs released by therapeutic hCPC to the benefit of their successful allogeneic clinical application. Through tailored allogeneic in vitro human assay models mimicking the clinical setting, we demonstrate that hCPC-released EV/Exs were rapidly and efficiently up-taken by chief cellular actors of cardiac repair/regeneration. This promoted MAPK/Erk1/2 activation, migration, and proliferation of human leukocyte antigens (HLA)-mismatched hCPC, mimicking endogenous progenitor cells and cardiomyocytes, and enhanced endothelial cell migration, growth, and organization into tube-like structures through activation of several signaling pathways. EV/Exs also acted as pro-survival stimuli for HLA-mismatched monocytes tuning their phenotype toward an intermediate anti-inflammatory pro-angiogenic phenotype. Thus, while positively impacting the intrinsic regenerative and angiogenic programs, EV/Exs released by therapeutic allogeneic hCPC can also actively contribute to shaping MI-inflammatory environment, which could strengthen the benefits of hCPC allogeneic interactions. Collectively, our data might forecast the application of allogeneic hCPC followed by their cell-free EV/Exs as a strategy that will not only elicit the cell-contact mediated reparative/regenerative immune response but also have the desired long-lasting effects through the EV/Exs. Stem Cells Translational Medicine 2019;8:911&924.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre/metabolismo , Butadienos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Vesículas Extracelulares/trasplante , Antígenos HLA/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Monocitos/citología , Monocitos/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Nitrilos/farmacología , Transducción de Señal , Células Madre/citología , Trasplante Homólogo
7.
Front Immunol ; 8: 756, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713380

RESUMEN

BACKGROUND: Graft-vs-host disease (GVHD) is a major complication of allogenic bone marrow transplantation (BMT). Targeting costimulatory molecules with antagonist antibodies could dampen the excessive immune response that occurs, while preserving the beneficial graft vs leukemia (GVL) of the allogeneic response. Previous studies using a mouse model of GVHD have shown that targeting the T-cell Inducible COStimulator (ICOS, CD278) molecule is beneficial, but it is unclear whether the same applies to human cells. METHODS: Here, we assessed whether a monoclonal antibody (mAb) to human ICOS was able to antagonize the costimulatory signal delivered in vivo to human T cells. To test this hypothesis, we used a xenogeneic model of GVHD where human peripheral blood mononuclear cells were adoptively transferred in immunocompromised NOD.SCID.gc-null mice (NSG). RESULTS: In this model, control mice invariably lost weight and died by day 50. In contrast, 65% of the mice receiving a single injection of the anti-hICOS mAb survived beyond 100 days. Moreover, a significant improvement in survival was obtained in a curative xeno-GVHD setting. Mechanistically, administration of the anti-hICOS mAb was associated with a strong reduction in perivascular infiltrates in liver and lungs and reduction in frequencies and numbers of human T cells in the spleen. In addition, the mAb prevented T-cell expansion in the blood during xeno-GVHD. Importantly, GVHD-protected mice retained the ability to control the P815 mastocytoma cell line, mimicking GVL in humans. CONCLUSION: A mAb-targeting human ICOS alleviated GVHD without impairing GVL in a xenograft murine model. Thus, ICOS represents a promising target in the management of BMT, preventing GVHD while preserving GVL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA