Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 242(5): 2353-2368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515228

RESUMEN

Evolutionary radiation, a pivotal aspect of macroevolution, offers valuable insights into evolutionary processes. The genus Pinus is the largest genus in conifers with c . 90% of the extant species emerged in the Miocene, which signifies a case of rapid diversification. Despite this remarkable history, our understanding of the mechanisms driving radiation within this expansive genus has remained limited. Using exome capture sequencing and a fossil-calibrated phylogeny, we investigated the divergence history, niche diversification, and introgression among 13 closely related Eurasian species spanning climate zones from the tropics to the boreal Arctic. We detected complex introgression among lineages in subsection Pinus at all stages of the phylogeny. Despite this widespread gene exchange, each species maintained its genetic identity and showed clear niche differentiation. Demographic analysis unveiled distinct population histories among these species, which further influenced the nucleotide diversity and efficacy of purifying and positive selection in each species. Our findings suggest that radiation in the Eurasian pines was likely fueled by interspecific recombination and further reinforced by their adaptation to distinct environments. Our study highlights the constraints and opportunities for evolutionary change, and the expectations of future adaptation in response to environmental changes in different lineages.


Asunto(s)
Flujo Génico , Filogenia , Pinus , Pinus/genética , Pinus/efectos de la radiación , Evolución Biológica , Variación Genética , Especificidad de la Especie , Europa (Continente) , Especiación Genética
2.
New Phytol ; 243(3): 1231-1246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38308133

RESUMEN

Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.


Asunto(s)
Adaptación Fisiológica , Variación Genética , Pinus sylvestris , Pinus sylvestris/genética , Pinus sylvestris/fisiología , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple/genética , Flujo Génico , Genética de Población , Geografía
3.
Mol Phylogenet Evol ; 120: 248-258, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29199106

RESUMEN

Assessing the relative contributions of immigration and diversification into the buildup of species diversity is key to understanding the role of historical processes in driving biogeographical and diversification patterns in species-rich regions. Here, we investigated how colonization, in situ speciation, and extinction history may have generated the present-day distribution and diversity of Goura crowned pigeons (Columbidae), a group of large forest-dwelling pigeons comprising four recognized species that are all endemic to New Guinea. We used a comprehensive geographical and taxonomic sampling based mostly on historical museum samples, and shallow shotgun sequencing, to generate complete mitogenomes, nuclear ribosomal clusters and independent nuclear conserved DNA elements. We used these datasets independently to reconstruct molecular phylogenies. Divergence time estimates were obtained using mitochondrial data only. All analyses revealed similar genetic divisions within the genus Goura and recovered as monophyletic groups the four species currently recognized, providing support for recent taxonomic changes based on differences in plumage characters. These four species are grouped into two pairs of strongly supported sister species, which were previously not recognized as close relatives: Goura sclaterii with Goura cristata, and Goura victoria with Goura scheepmakeri. While the geographical origin of the Goura lineage remains elusive, the crown age of 5.73 Ma is consistent with present-day species diversity being the result of a recent diversification within New Guinea. Although the orogeny of New Guinea's central cordillera must have played a role in driving diversification in Goura, cross-barrier dispersal seems more likely than vicariance to explain the speciation events having led to the four current species. Our results also have important conservation implications. Future assessments of the conservation status of Goura species should consider threat levels following the taxonomic revision proposed by del Hoyo and Collar (HBW and BirdLife International illustrated checklist of the birds of the world 1: non-passerines, 2014), which we show to be fully supported by genomic data. In particular, distinguishing G. sclaterii from G. scheepmakeri seems to be particularly relevant.


Asunto(s)
Columbidae/clasificación , Evolución Molecular , Animales , Columbidae/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Variación Genética , Genoma Mitocondrial , Nueva Guinea , Filogenia , Análisis de Secuencia de ADN
4.
Evol Appl ; 16(9): 1637-1660, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37752962

RESUMEN

Some fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers (HGTs). Studying their adaptation to human-made substrates is of fundamental and applied importance for understanding adaptation processes and for further strain improvement. We studied here the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense, the most common species in the dry-cured meat food industry, and P. salamii, used locally by farms. Both species displayed low genetic diversity, lacking differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed HGTs, particularly between P. nalgiovense and P. salamii (representing almost 1.5 Mb of cumulative length). HGTs additionally involved P. biforme, also found in dry-cured meat products. We further detected positive selection based on amino acid changes. Our findings suggest that selection by humans has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii, P. nalgiovense and P. biforme, indicating convergent adaptation to the same human-made environment. Our findings have implications for fundamental knowledge on adaptation and for the food industry: the discovery of different phenotypes and of two mating types paves the way for strain improvement by conventional breeding, to elucidate the genomic bases of beneficial phenotypes and to generate diversity.

5.
R Soc Open Sci ; 4(2): 160805, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28386436

RESUMEN

Understanding the mechanisms responsible for phenotypic diversification within and among species ultimately rests with linking naturally occurring mutations to functionally and ecologically significant traits. Colour polymorphisms are of great interest in this context because discrete colour patterns within a population are often controlled by just a few genes in a common environment. We investigated how and why phenotypic diversity arose and persists in the Zosterops borbonicus white-eye of Reunion (Mascarene archipelago), a colour polymorphic songbird in which all highland populations contain individuals belonging to either a brown or a grey plumage morph. Using extensive phenotypic and genomic data, we demonstrate that this melanin-based colour polymorphism is controlled by a single locus on chromosome 1 with two large-effect alleles, which was not previously described as affecting hair or feather colour. Differences between colour morphs appear to rely upon complex cis-regulatory variation that either prevents the synthesis of pheomelanin in grey feathers, or increases its production in brown ones. We used coalescent analyses to show that, from a 'brown' ancestral population, the dominant 'grey' allele spread quickly once it arose from a new mutation. Since colour morphs are always found in mixture, this implies that the selected allele does not go to fixation, but instead reaches an intermediate frequency, as would be expected under balancing selection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA