Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109568, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636741

RESUMEN

Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20 % fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20 % FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1ß, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.


Asunto(s)
Enfermedades de los Peces , Animales , Línea Celular , Enfermedades de los Peces/inmunología , Aletas de Animales/inmunología , Poli I-C/farmacología , Inmunidad Innata , Perciformes/inmunología , Perciformes/genética , Peces/inmunología
2.
Fish Shellfish Immunol ; 143: 109163, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838211

RESUMEN

The golden pompano (Trachinotus blochii), a pivotal commercial marine species in China, has gained significant popularity worldwide. However, accompanied with rapid growth and high density aquaculture, golden pompano has been seriously threatened by Nervous necrosis virus (NNV), while its molecular biology research regarding the innate immune system remains unexplored, which is crucial for understanding the activation of interferon (IFN) production and antiviral responses. In this study, we aimed to identify the characterization and function of golden pompano TANK-binding kinase 1 (gpTBK1), thereby providing evidence of the conservation of this classical factor in the RLR pathway among marine fish. Initially, we found the expression of gpTBK1 upregulation in diseased golden pompano with NNV infection and we successfully cloned the full-length open reading frame (ORF) of gpTBK1, consisting of 2172 nucleotides encoding 723 amino acids, from the head kidney. Subsequent analysis of the amino acid sequence revealed homology between gpTBK1 and other fish TBK1 proteins, with conserved N-terminal Serine/Threonine protein kinases catalytic domain (S_TKc) and C-terminal coiled coil domain (CCD). Moreover, the expression pattern showed that gpTBK1 exhibited ubiquitous expression across all evaluated tissues. Furthermore, functional identification experiments indicated that gpTBK1 activated interferon promoters' activity in golden pompano and induced the expression of downstream IFN-stimulated genes (ISGs). Notably, gpTBK1 was found to co-localize and interact with gpIRF3 in the cytoplasm. Collectively, these data provide a comprehensive analysis of the characterization and functional role of gpTBK1 in promoting interferon production. This research may facilitate the further study of the innate antiviral response, particularly the anti-NNV mechanisms, in golden pompano.


Asunto(s)
Peces , Inmunidad Innata , Animales , Inmunidad Innata/genética , Proteínas de Peces/química , Interferones , Antivirales
3.
Front Endocrinol (Lausanne) ; 13: 902737, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992144

RESUMEN

Kisspeptin plays a vital role in mediating the stress-induced reproductive regulation. Cortisol, known as a stress-related hormone, is involved in gonadal development and sexual differentiation by binding with glucocorticoid receptor (GR) to regulate the expression of kiss gene. In the present study, cortisol treatment in yellowtail clownfish (Amphiprion clarkii) showed that the expression of kiss (kiss1 and kiss2) and gr (gr1 and gr2) genes were increased significantly. We demonstrated that the yellowtail clownfish Kiss neurons co-express the glucocorticoid receptors in the telencephalon, mesencephalon, cerebellum, and hypothalamus. We further cloned the promoter of kiss2 gene in yellowtail clownfish and identified the presence of putative binding sites for glucocorticoid receptors, estrogen receptors, androgen receptors, progesterone receptors, AP1, and C/EBP. Applying transient transfection in HEK293T cells of the yellowtail clownfish kiss2 promoter, cortisol (dexamethasone) treatment was shown to enhance the promoter activities of the yellowtail clownfish kiss2 gene in the presence of GRs. Deletion analysis of kiss2 promoter indicated that cortisol-induced promoter activities were located between position -660 and -433 with GR1, and -912 and -775 with GR2, respectively. Finally, point mutation studies on the kiss2 promoter showed that cortisol-stimulated promoter activity was mediated by one GRE site located at position -573 in the presence of GR1 and by each GRE site located at position -883, -860, -851, and -843 in the presence of GR2. Results of the present study provide novel evidence that cortisol could regulate the transcription of kiss2 gene in the yellowtail clownfish via GRE-dependent GR pathway.


Asunto(s)
Perciformes , Receptores de Glucocorticoides , Animales , Células HEK293 , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacología , Perciformes/genética , Regiones Promotoras Genéticas , Receptores de Glucocorticoides/genética
4.
Endocr Connect ; 11(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35904230

RESUMEN

Kisspeptin system was shown to be a key factor in mediating social stress and reproduction. Yellowtail clownfish, Amphiprion clarkii, is a hermaphrodite fish, whose sex determination and gonadal development are affected by the social status of individuals. The yellowtail clownfish is a fantastic animal model to explore sex determination, but the social status and precise distribution of kiss mRNAs in the brain of this species are unknown. Hererin, a novel in situ hybridization technique, RNAscope, was used to investigate the distribution of kiss1 and kiss2 expressions in the brain of yellowtail clownfish. The coronal planes of brain showed that the kiss1 signal was mainly present in dorsal habenular nucleus (NHd) and kiss2 mRNA was widely expressed in telencephalon, midbrain, and hypothalamus, especially in dorsal part of the nucleus of the lateral recess (NRLd). Additionally, kiss1 and kiss2 signals have sexually dimorphic distribution. The kiss1 mRNA was distributed in NHd, the telencephalon, and lateral part of the diffuse nucleus of the inferior lobe (NDLIl) of females but in NHd and NDLIl of males. kiss2 signals were stronger in females than that in males. The distribution of kiss1 and kiss2 neurons in NHd of habenula and NRLd of hypothalamus may suggest that kiss genes associate environmental signaling and reproductive function in yellowtail clownfish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA