Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Microbiol ; 20(1): 252, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795262

RESUMEN

BACKGROUND: Groundnut pre- and post-harvest contamination is commonly caused by fungi from the Genus Aspergillus. Aspergillus flavus is the most important of these fungi. It belongs to section Flavi; a group consisting of aflatoxigenic (A. flavus, A. parasiticus and A. nomius) and non-aflatoxigenic (A. oryzae, A. sojae and A. tamarii) fungi. Aflatoxins are food-borne toxic secondary metabolites of Aspergillus species associated with severe hepatic carcinoma and children stuntedness. Despite the well-known public health significance of aflatoxicosis, there is a paucity of information about the prevalence, genetic diversity and population structure of A. flavus in different groundnut growing agro-ecological zones of Uganda. This cross-sectional study was therefore conducted to fill this knowledge gap. RESULTS: The overall pre- and post-harvest groundnut contamination rates with A. flavus were 30.0 and 39.2% respectively. Pre- and post-harvest groundnut contamination rates with A. flavus across AEZs were; 2.5 and 50.0%; (West Nile), 55.0 and 35.0% (Lake Kyoga Basin) and 32.5 and 32.5% (Lake Victoria Basin) respectively. There was no significant difference (χ2 = 2, p = 0.157) in overall pre- and post-harvest groundnut contamination rates with A. flavus and similarly no significant difference (χ2 = 6, p = 0.199) was observed in the pre- and post-harvest contamination of groundnut with A. flavus across the three AEZs. The LKB had the highest incidence of aflatoxin-producing Aspergillus isolates while WN had no single Aspergillus isolate with aflatoxin-producing potential. Aspergillus isolates from the pre-harvest groundnut samples had insignificantly higher incidence of aflatoxin production (χ2 = 2.667, p = 0.264) than those from the post-harvest groundnut samples. Overall, A. flavus isolates exhibited moderate level (92%, p = 0.02) of genetic diversity across the three AEZs and low level (8%, p = 0.05) of genetic diversity within the individual AEZs. There was a weak positive correlation (r = 0.1241, p = 0.045) between genetic distance and geographic distance among A. flavus populations in the LKB, suggesting that genetic differentiation in the LKB population might be associated to geographic distance. A very weak positive correlation existed between genetic variation and geographic location in the entire study area (r = 0.01, p = 0.471), LVB farming system (r = 0.0141, p = 0.412) and WN farming system (r = 0.02, p = 0.478). Hierarchical clustering using the unweighted pair group method with arithmetic means (UPGMA) revealed two main clusters of genetically similar A. flavus isolates. CONCLUSIONS: These findings provide evidence that genetic differentiation in A. flavus populations is independent of geographic distance. This information can be valuable in the development of a suitable biocontrol management strategy of aflatoxin-producing A. flavus.


Asunto(s)
Aflatoxinas/metabolismo , Aspergillus flavus/clasificación , Variación Genética , Nueces/microbiología , Aflatoxinas/genética , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Análisis por Conglomerados , Productos Agrícolas/microbiología , Contaminación de Alimentos , Filogenia , Metabolismo Secundario , Uganda
2.
J Sci Food Agric ; 100(2): 634-647, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31591722

RESUMEN

BACKGROUND: Vitamin A deficiency (VAD) is widespread in sub-Saharan Africa (SSA). Unlike in developed countries, where the main source of vitamin A comes from meat, the diet of poor populations in SSA is largely plant based. It is thus important to identify local / popular plants with higher vitamin A content for combating VAD. Banana (including plantains) is an important staple food crop in this region. The identification and promotion of vitamin A-rich banana cultivars could contribute significantly to the alleviation of VAD in areas heavily dependent on the crop. We assessed pro-vitamin A carotenoid (pVACs) content in the fruit pulp of 48 local plantains from eastern Democratic Republic of Congo, to identify cultivars that could help reduce VAD, especially among young children and women of reproductive age. RESULTS: Mean pVACs content varied from 175-1756 µg/100 gfw in ripe fruits. Significant increases (P < 0.001) in total pVACs content occurred after ripening in all cultivars except 'UCG II'. Retinol activity equivalents (RAE) in ripe fruits ranged from 12-113 µg/100 gfw. Fifteen plantain cultivars, including 'Adili II', 'Nzirabahima', 'Mayayi', 'Buembe', and 'Sanza Tatu' (associated with RAE values of 44 µg/100 gfw and above) can be considered as good sources of pVACs. Modest consumption (250 or 500 gfw) of the fruit pulp of the five best plantain cultivars at ripening stage 5 meets between 39-71% and 44-81% of vitamin A dietary reference intake (DRI) respectively, for children below 5 years old and women of reproductive age. CONCLUSION: The 15 best plantain cultivars (especially the top 5) could potentially be introduced / promoted as alternative sources of pro-vitamin A in banana-dependent communities, and help to reduce cases of VAD substantially. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Carotenoides/análisis , Musa/química , Vitamina A/análisis , Adolescente , Adulto , Carotenoides/metabolismo , Preescolar , República Democrática del Congo , Femenino , Frutas/química , Frutas/metabolismo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Musa/clasificación , Musa/metabolismo , Provitaminas/análisis , Vitamina A/metabolismo , Deficiencia de Vitamina A/dietoterapia , Deficiencia de Vitamina A/metabolismo , Adulto Joven
3.
J Econ Entomol ; 115(2): 637-646, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35021224

RESUMEN

The banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is an economically important insect pest of bananas. It causes up to 100% yield losses and substantial lifespan reduction in bananas. Advances in genomics, proteomics, and sequencing technologies have provided powerful pathways to genotyping disastrous pests such as C. sordidus. However, such technologies are often not available to the majority of rural subtropical African banana growers and pest control managers. This study was therefore motivated by the need to create cheap and easily accessible C. sordidus genotyping methods that could be deployed by banana pest control managers to the benefit of C. sordidus control programs in the tropics where such advanced technologies are not readily accessible. We used an in-house C. sordidus transcriptome from the an-ongoing study from which we mined an array of simple sequence repeat (SSR) markers. Of these, six highly polymorphic transcriptome-derived SSR markers were used to successfully genotype within and among banana weevil population genetic diversity of 12 C. sordidus populations collected from four banana-growing agro-ecological zones (AEZs) in Uganda. The developed transcriptome-derived SSR markers can be used by researchers in population genetics for characterization of the C. sordidus and identification of new genes that are linked to traits of particular interest. The significant genetic diversity revealed in C. sordidus provides pertinent information for integrated pest management strategies.


Asunto(s)
Escarabajos , Musa , Gorgojos , Animales , Variación Genética , Repeticiones de Microsatélite , Musa/genética , Transcriptoma , Gorgojos/genética
4.
J Agric Food Chem ; 64(16): 3176-85, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27041343

RESUMEN

The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.


Asunto(s)
Carotenoides/metabolismo , Musa/metabolismo , Musa/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA