Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38735362

RESUMEN

OBJECTIVE: Ectopic articular calcification is a common phenomenon of osteoarthritic joints, and closely related to disease progression. Identification of the involved calcium crystal types represents an important topic in research and clinical practice. Difficulties in accurate detection and crystal type identification have led to inconsistent data on the prevalence and spatial distribution of Basic calcium phosphate (BCP) and calcium pyrophosphate (CPP) deposition. METHOD: Combining multiple imaging methods including conventional radiography, histology and Raman spectroscopy, this study provides a comprehensive analysis of BCP and CPP-based calcification, its frequency and distribution in cartilage and synovial membrane samples of 92 osteoarthritis patients undergoing knee replacement surgery. RESULTS: Conventional radiography showed calcifications in 35% of patients. Von Kossa staining detected calcified deposits in 88% and 57% of cartilage and synovial samples, respectively. BCP crystals presented as brittle deposits on top of the cartilage surface or embedded in synovial tissue. CPP deposits appeared as larger granular needle-shaped clusters or dense circular pockets below the cartilage surface or within synovial tissue. Spectroscopic analysis detected BCP crystals in 75% of cartilage and 43% of synovial samples. CPP deposition was only detected in 18% of cartilage and 15% of synovial samples, often coinciding with BCP deposits. CONCLUSION: BCP is the predominant crystal type in calcified cartilage and synovium while CPP deposition is rare, often coinciding with BCP. Distinct and qualitative information on BCP and CPP deposits in joint tissues gives rise to the speculation that different disease entities are involved that might need different treatment strategies.

2.
Orthopadie (Heidelb) ; 53(7): 479-486, 2024 Jul.
Artículo en Alemán | MEDLINE | ID: mdl-38833160

RESUMEN

This article is intended to highlight one of the key roles in endoprosthetic treatment with artificial implants and the extension of service life. Like every joint, artificial joints are subject to the physical laws of friction and wear-in short, tribology. Material pairings, surfaces and mechanisms of action in particular play a decisive role here. The special features and current findings relating to the three largest synovial joints (hip, knee and shoulder) will be discussed in detail and suggestions will be made for future developments. Continuous developments in the field of the tribology of artificial joints can massively improve care for patients. The revision figures and reasons already show the success of individual improvements in recent years.


Asunto(s)
Fricción , Prótesis Articulares , Humanos , Diseño de Prótesis , Falla de Prótesis , Análisis de Falla de Equipo
3.
Acta Biomater ; 158: 827-842, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599400

RESUMEN

This retrieval study included 43 Biolox delta explants (18 CoC, 25 CoP). Implants were examined macroscopically, whereby damage was evaluated using a semi quantitative scoring system. Confocal microscopy was used to examine wear related damage patterns of the articulating surfaces. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) was used to analyze wear marks on the implant surface and wear debris in periprosthetic tissue samples. Raman spectroscopy and X-ray diffraction (XRD) were used to quantify monoclinic zirconia fractions. On all components, in vivo wear resulted predominantly in different damage patterns caused by metal transfer. In CoC bearings stripe wear was additionally detected, and some implants underwent severe damage due to component breakage. The wear scores were higher for CoC components, with no differences between the scores for CoC heads and liners. Wear features caused comparable roughening on implants from CoC and CoP bearings. SEM studies demonstrated that most wear marks were caused by metal debris released from implant components. Grain pull-out was observed in stripe wear regions. Monoclinic phase shift was observed in a similar quantity on components from CoP and CoC bearings. The increase of monoclinic zirconia content around metal deposits was minimal and was more pronounced in areas of stripe wear. The results of this study indicate, that ZTA components in general undergo minimal wear in both, CoC and CoP bearings, however, it is more pronounced in the former. Metal deposits, as the most common wear feature, have no significant effect on monoclinic phase transition. STATEMENT OF SIGNIFICANCE: In this paper, we classify all damage patterns macroscopically according to an established scoring system and assess them regarding surface roughness (confocal microscopy) and monoclinic phase content (Raman spectroscopy) in order to derive the severity for patients. We compare hard-hard and hard-soft bearings and relate damage patterns with metal transfer based on SEM/EDS examinations. Furthermore, we work out correlations between patient-specific data, cause of revision and the physical condition of each individual sample Our cohort consists of 43 Biolox delta retrievals, a comparatively large quantity. In addition, we address current topics such as metal transfer and, based on the classification of damage patterns, provide incentives and/or meaningful focal points for further research.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Ensayo de Materiales , Circonio/química , Diseño de Prótesis , Cerámica/química , Propiedades de Superficie , Falla de Prótesis
4.
Bone ; 175: 116852, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473933

RESUMEN

In vivo corrosion of modular endoprostheses remains a great concern, as the release of heavy metal ions can impair the implant's service life and the wellbeing of the patient. The detailed corrosion mechanisms that occur in vivo are so far not completely understood. In this context, the effects of implant released cobalt (Co) and chromium (Cr) ions on osteoblast mineralization and gene expression have not been investigated extensively. This comprehensive study aimed at furthering the understanding of in vivo implant corrosion from the clinical signs via prosthesis retrievals and histology of the synovial membranes down to the molecular processes instigated by corrosion products and its effects on bone mineralization. A detailed in vivo failure analysis was performed investigating 22 retrieved hip endoprostheses from different manufacturers and taper material combinations. The aim was to find a correlation of taper damage and especially corrosion to susceptible biomedical alloys and its effect on periprosthetic tissue as well as the clinical implant performance with regard to revision diagnosis and presence of radiolucent lines (RLL). A second part investigated the effects of Co and Cr ions on the in vitro mineralization process of osteoblasts. Cell cultures were exposed to relevant concentrations of CoCl2 and CrCl3 (0 µM, 100 µM, 200 µM) with and without addition of phosphate. Mineralization behavior was analyzed with Alizarin Red assay and Von Kossa staining of calcium depots, alkaline phosphatase activity of osteoblasts and gene expression was analyzed with real time quantitative PCR. The retrieval study provides evidence of in vivo fretting and crevice corrosion on all metallic tapers combined with either ceramic or metal femoral heads. Within the modular taper junctions, selective dissolution of the α phase occurred in wrought TiAl6V4 alloys, and etching of the fine-grained wrought CoCr28Mo6 alloy implants was observed in formed crevices. In addition, significant amounts of wear particles and corrosion products were detected in retrieved synovial membranes. An increased risk for the occurrence of a RLL in the proximal zones was determined for patients with a corroded mixed metal taper. Whereas Co ions have hardly any effects on mineralization, Cr ions cause a significant concentration dependent decrease in mineralization rate of osteoblasts. However, this effect is alleviated by addition of a phosphate source. Our data reveal that Cr ions depleted dissolved phosphates by forming an insoluble complex (CrPO4), which inhibits the phosphate dependent mineralization process. No significant effect of the heavy metal ions on osteoblast activity by means of alkaline phosphate activity as well as on gene expression is determined. This study broadens the understanding of in vivo corrosion of metallic modular implants and its clinically relevant effects on mineralization. Based on these findings, in vivo corrosion of CoCr28Mo6 endoprostheses should be limited to avoid inhibitory effects of Cr3+ on bone mineralization which can contribute to premature implant failure.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Calcinosis , Prótesis de Cadera , Metales Pesados , Humanos , Prótesis de Cadera/efectos adversos , Calcificación Fisiológica , Corrosión , Aleaciones de Cromo , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA