Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36971701

RESUMEN

The vestibular lamina (VL) forms the oral vestibule, creating a gap between the teeth, lips and cheeks. In a number of ciliopathies, formation of the vestibule is defective, leading to the creation of multiple frenula. In contrast to the neighbouring dental lamina, which forms the teeth, little is known about the genes that pattern the VL. Here, we establish a molecular signature for the usually non-odontogenic VL in mice and highlight several genes and signalling pathways that may play a role in its development. For one of these, the Sonic hedgehog (Shh) pathway, we show that co-receptors Gas1, Cdon and Boc are highly expressed in the VL and act to enhance the Shh signal from the forming incisor region. In Gas1 mutant mice, expression of Gli1 was disrupted and the VL epithelium failed to extend due to a loss of proliferation. This defect was exacerbated in Boc/Gas1 double mutants and could be phenocopied using cyclopamine in culture. Signals from the forming teeth, therefore, control development of the VL, coordinating the development of the dentition and the oral cavity.


Asunto(s)
Proteínas Hedgehog , Transducción de Señal , Ratones , Animales , Proteínas Hedgehog/metabolismo , Transducción de Señal/genética , Boca , Incisivo/metabolismo
2.
BMC Oral Health ; 23(1): 563, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573343

RESUMEN

BACKGROUND: Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION: Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS: In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.


Asunto(s)
Ameloblastoma , Carcinoma , Tumores Odontogénicos , Masculino , Humanos , Ameloblastoma/genética , Ameloblastoma/diagnóstico , Proteínas Proto-Oncogénicas B-raf/genética , Tumores Odontogénicos/diagnóstico , Tumores Odontogénicos/genética , Mutación , Carcinoma/patología
3.
Development ; 146(3)2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30658984

RESUMEN

Most mammals have two sets of teeth (diphyodont) - a deciduous dentition replaced by a permanent dentition; however, the mouse possesses only one tooth generation (monophyodont). In diphyodonts, the replacement tooth forms on the lingual side of the first tooth from the successional dental lamina. This lamina expresses the stem/progenitor marker Sox2 and has activated Wnt/ß-catenin signalling at its tip. Although the mouse does not replace its teeth, a transient rudimentary successional dental lamina (RSDL) still forms during development. The mouse RSDL houses Sox2-positive cells, but no Wnt/ß-catenin signalling. Here, we show that stabilising Wnt/ß-catenin signalling in the RSDL in the mouse leads to proliferation of the RSDL and formation of lingually positioned teeth. Although Sox2 has been shown to repress Wnt activity, overexpression of Wnts leads to a downregulation of Sox2, suggesting a negative-feedback loop in the tooth. In the mouse, the first tooth represses the formation of the replacement, and isolation of the RSDL is sufficient to induce formation of a new tooth germ. Our data highlight key mechanisms that may have influenced the evolution of replacement teeth.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Proliferación Celular/fisiología , Factores de Transcripción SOXB1/metabolismo , Germen Dentario/embriología , Diente/embriología , Vía de Señalización Wnt/fisiología , Animales , Ratones , Ratones Transgénicos , Factores de Transcripción SOXB1/genética , Porcinos , Porcinos Enanos , Diente/citología , Germen Dentario/citología
4.
Part Fibre Toxicol ; 19(1): 52, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922858

RESUMEN

BACKGROUND: Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. RESULTS: The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCß1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. CONCLUSION: Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure.


Asunto(s)
Nanopartículas del Metal , Fosfolipasas de Tipo C , Colesterol , Humanos , Inflamación , Plomo , Macrófagos , Nanopartículas del Metal/química , Óxidos
5.
Sensors (Basel) ; 21(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572796

RESUMEN

The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft tissues is a complex issue and demands a priori optimization, which is not straightforward in respect to a typical LIBS experiment. Here, we focus on implementing an internal standard into the LIBS elemental analysis of soft tissue samples. We achieve this by extending routine methodology for optimization of soft tissues analysis with a standard spiking method. This step enables a robust optimization procedure of LIBS experimental settings. Considering the implementation of LIBS analysis to the histological routine, we avoid further alterations of the tissue structure. Therefore, we propose a unique methodology of sample preparation, analysis, and subsequent data treatment, which enables the comparison of signal response from heterogenous matrix for different LIBS parameters. Additionally, a brief step-by-step process of optimization to achieve the highest signal-to-noise ratio (SNR) is described. The quality of laser-tissue interaction is investigated on the basis of the zinc signal response, while selected experimental parameters (e.g., defocus, gate delay, laser energy, and ambient atmosphere) are systematically modified.


Asunto(s)
Terapia por Láser , Rayos Láser , Células , Luz , Estándares de Referencia , Análisis Espectral
6.
Dev Dyn ; 249(2): 199-208, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31587402

RESUMEN

BACKGROUND: The egg tooth is a vital structure allowing hatchlings to escape from the egg. In squamates (snakes and lizards), the egg tooth is a real tooth that develops within the oral cavity at the top of the upper jaw. Most squamates have a single large midline egg tooth at hatching, but a few families, such as Gekkonidae, have two egg teeth. In snakes the egg tooth is significantly larger than the rest of the dentition and is one of the first teeth to develop. RESULTS: We follow the development of the egg tooth in four snake species and show that the single egg tooth is formed by two tooth germs. These two tooth germs are united at the midline and grow together to produce a single tooth. In culture, this merging can be perturbed to give rise to separate smaller teeth, confirming the potential of the developing egg tooth to form two teeth. CONCLUSIONS: Our data agrees with previous hypotheses that during evolution one potential mechanism to generate a large tooth is through congrescence of multiple tooth germs and suggests that the ancestors of snakes could have had two egg teeth.


Asunto(s)
Serpientes/embriología , Germen Dentario/embriología , Animales , Dentición , Diente
7.
Dev Dyn ; 249(4): 441-464, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31762125

RESUMEN

BACKGROUND: In mammals, odontogenesis is regulated by transient signaling centers known as enamel knots (EKs), which drive the dental epithelium shaping. However, the developmental mechanisms contributing to formation of complex tooth shape in reptiles are not fully understood. Here, we aim to elucidate whether signaling organizers similar to EKs appear during reptilian odontogenesis and how enamel ridges are formed. RESULTS: Morphological structures resembling the mammalian EK were found during reptile odontogenesis. Similar to mammalian primary EKs, they exhibit the presence of apoptotic cells and no proliferating cells. Moreover, expression of mammalian EK-specific molecules (SHH, FGF4, and ST14) and GLI2-negative cells were found in reptilian EK-like areas. 3D analysis of the nucleus shape revealed distinct rearrangement of the cells associated with enamel groove formation. This process was associated with ultrastructural changes and lipid droplet accumulation in the cells directly above the forming ridge, accompanied by alteration of membranous molecule expression (Na/K-ATPase) and cytoskeletal rearrangement (F-actin). CONCLUSIONS: The final complex shape of reptilian teeth is orchestrated by a combination of changes in cell signaling, cell shape, and cell rearrangement. All these factors contribute to asymmetry in the inner enamel epithelium development, enamel deposition, ultimately leading to the formation of characteristic enamel ridges.


Asunto(s)
Reptiles/anatomía & histología , Reptiles/crecimiento & desarrollo , Reptiles/metabolismo , Actinas/metabolismo , Animales , Esmalte Dental/citología , Esmalte Dental/metabolismo , Esmalte Dental/ultraestructura , Regulación del Desarrollo de la Expresión Génica/fisiología , Gotas Lipídicas/metabolismo , Microscopía Electrónica de Transmisión , Odontogénesis/fisiología , Diente
8.
Hum Mol Genet ; 27(6): 1093-1105, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29360984

RESUMEN

Cilia project from almost every cell integrating extracellular cues with signaling pathways. Constitutive activation of FGFR3 signaling produces the skeletal disorders achondroplasia (ACH) and thanatophoric dysplasia (TD), but many of the molecular mechanisms underlying these phenotypes remain unresolved. Here, we report in vivo evidence for significantly shortened primary cilia in ACH and TD cartilage growth plates. Using in vivo and in vitro methodologies, our data demonstrate that transient versus sustained activation of FGF signaling correlated with different cilia consequences. Transient FGF pathway activation elongated cilia, while sustained activity shortened cilia. FGF signaling extended primary cilia via ERK MAP kinase and mTORC2 signaling, but not through mTORC1. Employing a GFP-tagged IFT20 construct to measure intraflagellar (IFT) speed in cilia, we showed that FGF signaling affected IFT velocities, as well as modulating cilia-based Hedgehog signaling. Our data integrate primary cilia into canonical FGF signal transduction and uncover a FGF-cilia pathway that needs consideration when elucidating the mechanisms of physiological and pathological FGFR function, or in the development of FGFR therapeutics.


Asunto(s)
Acondroplasia/fisiopatología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Displasia Tanatofórica/fisiopatología , Acondroplasia/genética , Animales , Cartílago/metabolismo , Condrocitos/metabolismo , Cilios/patología , Cilios/fisiología , Ciliopatías/genética , Ciliopatías/fisiopatología , Factores de Crecimiento de Fibroblastos/metabolismo , Placa de Crecimiento/metabolismo , Humanos , Ratones , Células 3T3 NIH , Fenotipo , Cultivo Primario de Células , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/fisiología , Displasia Tanatofórica/genética
9.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114430

RESUMEN

Dietary supplementation with polyunsaturated fatty acids (PUFA) n-3 can affect cutaneous wound healing; however, recent findings demonstrate the variable extent of their influence on the quality of healing. Here, we compare the effect of several dietary oils, containing different levels of PUFA n-3 and PUFA n-6, on wound healing in the rat model. Rats were fed the feed mixture with 8% palm oil (P), safflower oil (S), fish oil (F) or Schizochytrium microalga extract (Sch) and compared to the animals fed by control feed mixture (C). Dorsal full-thickness cutaneous excisions were performed after 52 days of feeding and skin was left to heal for an additional 12 days. Histopathological analysis of skin wounds was performed, including immune cells immunolabeling and the determination of hydroxyproline amount as well as gene expression analyses of molecules contributing to different steps of the healing. Matrix-assisted-laser-desorption-ionization mass-spectrometry-imaging (MALDI-MSI) was used to determine the amount of collagen α-1(III) chain fragment in healing samples. Treatment by Schizochytrium extract resulted in decrease in the total wound area, in contrast to the safflower oil group where the size of the wound was larger when comparing to control animals. Diet with Schizochytrium extract and safflower oils displayed a tendency to increase the number of new vessels. The number of MPO-positive cells was diminished following any of oil treatment in comparison to the control, but their highest amount was found in animals with a fish oil diet. On the other hand, the number of CD68-positive macrophages was increased, with the most significant enhancement in the fish oil and safflower oil group. Hydroxyproline concentration was the highest in the safflower oil group but it was also enhanced in all other analyzed treatments in comparison to the control. MALDI-MSI signal intensity of a collagen III fragment decreased in the sequence C > S > Sch > P > F treatment. In conclusion, we observed differences in tissue response during healing between dietary oils, with the activation of inflammation observed following the treatment with oil containing high eicosapentaenoic acid (EPA) level (fish oil) and enhanced healing features were induced by the diet with high content of docosahexaenoic acid (DHA, Schizochytrium extract).


Asunto(s)
Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Animales , Antígenos CD8/metabolismo , Colágeno Tipo III/metabolismo , Grasas Insaturadas en la Dieta/farmacología , Modelos Animales de Enfermedad , Aceites de Pescado/administración & dosificación , Aceites de Pescado/química , Aceites de Pescado/farmacología , Indoles/química , Macrófagos/inmunología , Masculino , Aceite de Palma/administración & dosificación , Aceite de Palma/química , Aceite de Palma/farmacología , Ratas , Aceite de Cártamo/administración & dosificación , Aceite de Cártamo/química , Aceite de Cártamo/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228049

RESUMEN

The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO3)2 NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance. We examined (i) lead biodistribution in target organs using laser ablation and inductively coupled plasma mass spectrometry (LA-ICP-MS) and atomic absorption spectrometry (AAS), (ii) lead effect on histopathological changes and immune cells response in secondary target organs and (iii) the clearance ability of target organs. In the lungs and liver, Pb(NO3)2 NP inhalation induced serious structural changes and their damage was present even after a 5-week clearance period despite the lead having been almost completely eliminated from the tissues. The numbers of macrophages significantly decreased after 11-week Pb(NO3)2 NP inhalation; conversely, abundance of alpha-smooth muscle actin (α-SMA)-positive cells, which are responsible for augmented collagen production, increased in both tissues. Moreover, the expression of nuclear factor κB (NF-κB) and selected cytokines, such as tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 (TGFß1), interleukin 6(IL-6), IL-1α and IL-1ß , displayed a tissue-specific response to lead exposure. In summary, diminished inflammatory response in tissues after Pb(NO3)2 NPs inhalation was associated with prolonged negative effect of lead on tissues, as demonstrated by sustained pathological changes in target organs, even after long clearance period.


Asunto(s)
Contaminantes Atmosféricos/farmacocinética , Plomo/farmacocinética , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Nitratos/farmacocinética , Actinas/agonistas , Actinas/genética , Actinas/inmunología , Administración por Inhalación , Contaminantes Atmosféricos/toxicidad , Animales , Disponibilidad Biológica , Femenino , Expresión Génica , Semivida , Exposición por Inhalación/análisis , Interleucina-1alfa/agonistas , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Interleucina-1beta/agonistas , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/agonistas , Interleucina-6/genética , Interleucina-6/inmunología , Plomo/toxicidad , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Pulmón/inmunología , Pulmón/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/patología , Nanopartículas del Metal/administración & dosificación , Ratones , Ratones Endogámicos ICR , FN-kappa B/agonistas , FN-kappa B/genética , FN-kappa B/inmunología , Nitratos/toxicidad , Espectrofotometría Atómica , Distribución Tisular , Factor de Crecimiento Transformador beta1/agonistas , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/inmunología , Factor de Necrosis Tumoral alfa/agonistas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
11.
Hum Mol Genet ; 25(1): 9-23, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494904

RESUMEN

Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) cause the most common genetic form of human dwarfism, achondroplasia (ACH). Small chemical inhibitors of FGFR tyrosine kinase activity are considered to be viable option for treating ACH, but little experimental evidence supports this claim. We evaluated five FGFR tyrosine kinase inhibitors (TKIs) (SU5402, PD173074, AZD1480, AZD4547 and BGJ398) for their activity against FGFR signaling in chondrocytes. All five TKIs strongly inhibited FGFR activation in cultured chondrocytes and limb rudiment cultures, completely relieving FGFR-mediated inhibition of chondrocyte proliferation and maturation. In contrast, TKI treatment of newborn mice did not improve skeletal growth and had lethal toxic effects on the liver, lungs and kidneys. In cell-free kinase assays as well as in vitro and in vivo cell assays, none of the tested TKIs demonstrated selectivity for FGFR3 over three other FGFR tyrosine kinases. In addition, the TKIs exhibited significant off-target activity when screened against a panel of 14 unrelated tyrosine kinases. This was most extensive in SU5402 and AZD1480, which inhibited DDR2, IGF1R, FLT3, TRKA, FLT4, ABL and JAK3 with efficiencies similar to or greater than those for FGFR. Low target specificity and toxicity of FGFR TKIs thus compromise their use for treatment of ACH. Conceptually, different avenues of therapeutic FGFR3 targeting should be investigated.


Asunto(s)
Acondroplasia/tratamiento farmacológico , Pirroles/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Catálisis/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Condrocitos/metabolismo , Humanos , Ratones , Compuestos de Fenilurea/farmacología , Piperazinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Síndrome
12.
Dev Dyn ; 245(9): 947-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27264541

RESUMEN

BACKGROUND: Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS: A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS: These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Mesodermo/citología , Mesodermo/fisiología , Células Madre/citología , Células Madre/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Portadoras/farmacología , Embrión de Pollo , Cara/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo
13.
Dev Biol ; 407(2): 275-88, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26385749

RESUMEN

Cranial neural crest cells form the majority of the facial skeleton. However exactly when the pattering information and hence jaw identity is established is not clear. We know that premigratory neural crest cells contain a limited amount of information about the lower jaw but the upper jaw and facial midline are specified later by local tissue interactions. The environmental signals leading to frontonasal identity have been explored by our group in the past. Altering the levels of two signaling pathways (Bone Morphogenetic Protein) and retinoic acid (RA) in the chicken embryo creates a duplicated midline on the side of the upper beak complete with egg tooth in place of maxillary derivatives (Lee et al., 2001). Here we analyze the transcriptome 16 h after bead placement in order to identify potential mediators of the identity change in the maxillary prominence. The gene list included RA, BMP and WNT signaling pathway genes as well as transcription factors expressed in craniofacial development. There was also cross talk between Noggin and RA such that Noggin activated the RA pathway. We also observed expression changes in several poorly characterized genes including the upregulation of Peptidase Inhibitor-15 (PI15). We tested the functional effects of PI15 overexpression with a retroviral misexpression strategy. PI15 virus induced a cleft beak analogous to human cleft lip. We next asked whether PI15 effects were mediated by changes in expression of major clefting genes and genes in the retinoid signaling pathway. Expression of TP63, TBX22, BMP4 and FOXE1, all human clefting genes, were upregulated. In addition, ALDH1A2, ALDH1A3 and RA target, RARß were increased while the degradation enzyme CYP26A1 was decreased. Together these changes were consistent with activation of the RA pathway. Furthermore, PI15 retrovirus injected into the face was able to replace RA and synergize with Noggin to induce beak transformations. We conclude that the microarrays have generated a rich dataset containing genes with important roles in facial morphogenesis. Moreover, one of these facial genes, PI15 is a putative clefting gene and is in a positive feedback loop with RA.


Asunto(s)
Pico/anomalías , Pico/metabolismo , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Portadoras/metabolismo , Embrión de Pollo , Bases de Datos Genéticas , Cara , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hibridación in Situ , Maxilar/efectos de los fármacos , Maxilar/embriología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Control de Calidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tretinoina/metabolismo , Tretinoina/farmacología
14.
Biochim Biophys Acta ; 1852(5): 839-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25558817

RESUMEN

Aberrant fibroblast growth factor (FGF) signaling disturbs chondrocyte differentiation in skeletal dysplasia, but the mechanisms underlying this process remain unclear. Recently, FGF was found to activate canonical WNT/ß-catenin pathway in chondrocytes via Erk MAP kinase-mediated phosphorylation of WNT co-receptor Lrp6. Here, we explore the cellular consequences of such a signaling interaction. WNT enhanced the FGF-mediated suppression of chondrocyte differentiation in mouse limb bud micromass and limb organ cultures, leading to inhibition of cartilage nodule formation in micromass cultures, and suppression of growth in cultured limbs. Simultaneous activation of the FGF and WNT/ß-catenin pathways resulted in loss of chondrocyte extracellular matrix, expression of genes typical for mineralized tissues and alteration of cellular shape. WNT enhanced the FGF-mediated downregulation of chondrocyte proteoglycan and collagen extracellular matrix via inhibition of matrix synthesis and induction of proteinases involved in matrix degradation. Expression of genes regulating RhoA GTPase pathway was induced by FGF in cooperation with WNT, and inhibition of the RhoA signaling rescued the FGF/WNT-mediated changes in chondrocyte cellular shape. Our results suggest that aberrant FGF signaling cooperates with WNT/ß-catenin in suppression of chondrocyte differentiation.


Asunto(s)
Cartílago/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Western Blotting , Cartílago/citología , Cartílago/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Células Cultivadas , Condrocitos/metabolismo , Sinergismo Farmacológico , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células HEK293 , Humanos , Esbozos de los Miembros/efectos de los fármacos , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Microscopía Confocal , Modelos Biológicos , Ratas , Receptores de Factores de Crecimiento de Fibroblastos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Proteínas Wnt/genética , Proteínas Wnt/farmacología , Proteína Wnt3A/farmacología , beta Catenina/genética
15.
J Anat ; 229(3): 356-68, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27173578

RESUMEN

Chameleon teeth develop as individual structures at a distance from the developing jaw bone during the pre-hatching period and also partially during the post-hatching period. However, in the adult, all teeth are fused together and tightly attached to the jaw bone by mineralized attachment tissue to form one functional unit. Tooth to bone as well as tooth to tooth attachments are so firm that if injury to the oral cavity occurs, several neighbouring teeth and pieces of jaw can be broken off. We analysed age-related changes in chameleon acrodont dentition, where ankylosis represents a physiological condition, whereas in mammals, ankylosis only occurs in a pathological context. The changes in hard-tissue morphology and mineral composition leading to this fusion were analysed. For this purpose, the lower jaws of chameleons were investigated using X-ray micro-computed tomography, laser-induced breakdown spectroscopy and microprobe analysis. For a long time, the dental pulp cavity remained connected with neighbouring teeth and also to the underlying bone marrow cavity. Then, a progressive filling of the dental pulp cavity by a mineralized matrix occurred, and a complex network of non-mineralized channels remained. The size of these unmineralized channels progressively decreased until they completely disappeared, and the dental pulp cavity was filled by a mineralized matrix over time. Moreover, the distribution of calcium, phosphorus and magnesium showed distinct patterns in the different regions of the tooth-bone interface, with a significant progression of mineralization in dentin as well as in the supporting bone. In conclusion, tooth-bone fusion in chameleons results from an enhanced production of mineralized tissue during post-hatching development. Uncovering the developmental processes underlying these outcomes and performing comparative studies is necessary to better understand physiological ankylosis; for that purpose, the chameleon can serve as a useful model species.


Asunto(s)
Dentición , Maxilares/anatomía & histología , Calcificación de Dientes/fisiología , Diente/anatomía & histología , Diente/fisiología , Envejecimiento , Animales , Lagartos , Microtomografía por Rayos X
16.
Cell Mol Life Sci ; 72(12): 2445-59, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25854632

RESUMEN

Fibroblast growth factors (FGFs) deliver extracellular signals that govern many developmental and regenerative processes, but the mechanisms regulating FGF signaling remain incompletely understood. Here, we explored the relationship between intrinsic stability of FGF proteins and their biological activity for all 18 members of the FGF family. We report that FGF1, FGF3, FGF4, FGF6, FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and FGF22 exist as unstable proteins, which are rapidly degraded in cell cultivation media. Biological activity of FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, and FGF20 is limited by their instability, manifesting as failure to activate FGF receptor signal transduction over long periods of time, and influence specific cell behavior in vitro and in vivo. Stabilization via exogenous heparin binding, introduction of stabilizing mutations or lowering the cell cultivation temperature rescues signaling of unstable FGFs. Thus, the intrinsic ligand instability is an important elementary level of regulation in the FGF signaling system.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias de la Mama/metabolismo , Proliferación Celular , Condrosarcoma/metabolismo , Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Condrosarcoma/genética , Condrosarcoma/patología , Dicroismo Circular , Femenino , Factores de Crecimiento de Fibroblastos/clasificación , Factores de Crecimiento de Fibroblastos/genética , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Estabilidad Proteica , Ratas , Temperatura , Células Tumorales Cultivadas
17.
Int J Mol Sci ; 17(6)2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27271611

RESUMEN

The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO) nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.


Asunto(s)
Compuestos de Cadmio/efectos adversos , Inhalación , Nanopartículas/efectos adversos , Óxidos/efectos adversos , Animales , Cadmio/efectos adversos , Cadmio/sangre , Compuestos de Cadmio/sangre , Compuestos de Cadmio/química , Compuestos de Cadmio/metabolismo , Exposición a Riesgos Ambientales , Femenino , Riñón/metabolismo , Riñón/patología , Riñón/ultraestructura , Hígado/metabolismo , Hígado/patología , Hígado/ultraestructura , Pulmón/metabolismo , Pulmón/patología , Pulmón/ultraestructura , Ratones , Nanopartículas/química , Óxidos/sangre , Óxidos/química , Óxidos/metabolismo , Tamaño de la Partícula , Bazo/metabolismo , Bazo/patología , Bazo/ultraestructura
18.
Dev Growth Differ ; 56(8): 555-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25280231

RESUMEN

Fibroblast growth factor (FGF) signalling appears essential for the regulation of limb development, but a full complexity of this regulation remains unclear. Here, we addressed the effect of three different chemical inhibitors of FGF receptor tyrosine kinases (FGFR) on growth and patterning of the chicken wings. The inhibitor PD173074 caused shorter and thinner wing when using lower concentration. Microinjection of higher PD173074 concentrations (25 and 50 mmol/L) into the wing bud at stage 20 resulted in the development of small wing rudiment or the total absence of the wing. Skeletal analysis revealed the absence of the radius but not ulna, deformation of metacarpal bones and/or a reduction of digits. Treatment with PD161570 resembled the effects of PD173074. NF449 induced shortening and deformation of the developing wing with reduced autopodium. These malformed embryos mostly died at the stage HH25-29. PD173074 reduced chondrogenesis also in the limb micromass cultures together with early inhibition of cartilaginous nodule formation, evidenced by lack of sulphated proteoglycan and peanut agglutinin expression. The effect of FGFR inhibition on limb development observed here was unlikely mediated by excessive cell death as none of the inhibitors caused massive apoptosis at low concentrations. More probably, FGFR inhibition decreased both the proliferation and adhesion of mesenchymal chondroprogenitors. We conclude that FGFR signalling contributes to the regulation of the anterior-posterior patterning of zeugopod during chicken limb development.


Asunto(s)
Bencenosulfonatos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Alas de Animales/efectos de los fármacos , Alas de Animales/embriología , Animales , Bencenosulfonatos/administración & dosificación , Embrión de Pollo , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirimidinas/administración & dosificación , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Cells Tissues Organs ; 199(1): 1-23, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24903755

RESUMEN

Applications of nanoparticles (NP) in medicine, industry and other branches of human activities undoubtedly contribute to technology development and well-being. However, as NP are very small units in a wide range of materials, there is a lack of information related to possible side effects potentially affecting the health of organisms. There is increasing experimental interest in the determination of environmental effects on humans exposed to NP. Most such experimental studies focus on adult populations or adult experimental animals. However, embryos can be more sensitive to pollutants and environmental impacts in some species. Therefore, some investigations dealing particularly with the effects of NP on embryonic development have appeared recently and this issue is becoming of great concern. The aim of this review is to summarize the knowledge on the effects of various nanomaterials on embryonic development. A comprehensive collection of significant experimental nanotoxicity data is presented, which also indicate how the toxic effect of NP can be mediated and modulated with respect to possible effective protection strategies.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Nanopartículas/toxicidad , Animales , Pollos , Humanos
20.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511331

RESUMEN

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Animales , Neurogénesis/genética , Desarrollo Embrionario/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Cráneo/embriología , Cráneo/patología , Ratones , Fisura del Paladar/genética , Fisura del Paladar/patología , Fisura del Paladar/embriología , Labio Leporino/genética , Labio Leporino/patología , Labio Leporino/embriología , Nervio Trigémino/embriología , Embrión de Mamíferos/metabolismo , Cara/embriología , Cara/anomalías , Fenotipo , Discapacidad Intelectual/genética , Mutación/genética , Proteína Doblecortina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA