Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 73(6): 1292-1305.e8, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30765193

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for resolving transcriptional heterogeneity. However, its application to studying cancerous tissues is currently hampered by the lack of coverage across key mutation hotspots in the vast majority of cells; this lack of coverage prevents the correlation of genetic and transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a method for the high-sensitivity detection of multiple mutations within single cells from both genomic and coding DNA, in parallel with unbiased whole-transcriptome analysis. Applying TARGET-seq to 4,559 single cells, we demonstrate how this technique uniquely resolves transcriptional and genetic tumor heterogeneity in myeloproliferative neoplasms (MPN) stem and progenitor cells, providing insights into deregulated pathways of mutant and non-mutant cells. TARGET-seq is a powerful tool for resolving the molecular signatures of genetically distinct subclones of cancer cells.


Asunto(s)
Biomarcadores de Tumor/genética , Análisis Mutacional de ADN/métodos , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia/genética , Mutación , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Células Jurkat , Células K562 , Reproducibilidad de los Resultados , Schizosaccharomyces/genética
2.
Blood ; 134(13): 1059-1071, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31383639

RESUMEN

Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid-restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid-restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.


Asunto(s)
Feto/citología , Linfopoyesis , Neprilisina/análisis , Células Precursoras de Linfocitos B/citología , Adulto , Médula Ósea/embriología , Médula Ósea/metabolismo , Células Cultivadas , Feto/embriología , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Hígado/embriología , Hígado/metabolismo , Neprilisina/genética , Células Precursoras de Linfocitos B/metabolismo , Transcriptoma
3.
PLoS Genet ; 11(1): e1004876, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25625282

RESUMEN

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Asunto(s)
Glucemia/genética , Diabetes Mellitus Tipo 2/genética , Glucosa-6-Fosfatasa/genética , Insulina/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Exoma/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Receptor del Péptido 1 Similar al Glucagón , Índice Glucémico/genética , Humanos , Insulina/genética , Polimorfismo de Nucleótido Simple , Receptores de Glucagón/genética
4.
Nature ; 463(7283): 893-8, 2010 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-20164919

RESUMEN

The cancer genome is moulded by the dual processes of somatic mutation and selection. Homozygous deletions in cancer genomes occur over recessive cancer genes, where they can confer selective growth advantage, and over fragile sites, where they are thought to reflect an increased local rate of DNA breakage. However, most homozygous deletions in cancer genomes are unexplained. Here we identified 2,428 somatic homozygous deletions in 746 cancer cell lines. These overlie 11% of protein-coding genes that, therefore, are not mandatory for survival of human cells. We derived structural signatures that distinguish between homozygous deletions over recessive cancer genes and fragile sites. Application to clusters of unexplained homozygous deletions suggests that many are in regions of inherent fragility, whereas a small subset overlies recessive cancer genes. The results illustrate how structural signatures can be used to distinguish between the influences of mutation and selection in cancer genomes. The extensive copy number, genotyping, sequence and expression data available for this large series of publicly available cancer cell lines renders them informative reagents for future studies of cancer biology and drug discovery.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Eliminación de Gen , Genes Relacionados con las Neoplasias/genética , Genes Recesivos/genética , Genoma Humano/genética , Homocigoto , Neoplasias/genética , Selección Genética/genética , Línea Celular Tumoral , Cromosomas Humanos/genética , Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN , Dosificación de Gen/genética , Humanos , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo Físico de Cromosoma , Reproducibilidad de los Resultados
5.
Nature ; 463(7279): 360-3, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20054297

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Asunto(s)
Carcinoma de Células Renales/genética , Genes de la Neurofibromatosis 2 , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Neoplasias Renales/genética , Proteínas Nucleares/genética , Oxidorreductasas N-Desmetilantes/genética , Carcinoma de Células Renales/patología , Hipoxia de la Célula/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas , Humanos , Neoplasias Renales/patología , Mutación/genética , Análisis de Secuencia de ADN
6.
Nat Genet ; 39(9): 1127-33, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17704778

RESUMEN

Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Línea Celular Transformada , Codón sin Sentido , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Datos de Secuencia Molecular , Linaje , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Síndrome
7.
Nat Genet ; 37(6): 590-2, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15908952

RESUMEN

We examined the coding sequence of 518 protein kinases, approximately 1.3 Mb of DNA per sample, in 25 breast cancers. In many tumors, we detected no somatic mutations. But a few had numerous somatic mutations with distinctive patterns indicative of either a mutator phenotype or a past exposure.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Mutación , Proteínas Quinasas/genética , Anciano , Análisis Mutacional de ADN , Femenino , Humanos , Familia de Multigenes
8.
Wellcome Open Res ; 9: 548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39450189

RESUMEN

The Ebola Data Platform (EDP) was developed to strengthen knowledge and capacity across health, research, and humanitarian communities to reduce the impact of Ebola through responsible data use. This collaborative initiative was established by West African governments, NGOs, academic organisations, and intra-governmental health organisations directly involved in the 2013-2016 West African Ebola outbreak. The platform was established to provide a centralised, standardised dataset of individual patient data collected during the outbreak for the purpose of research to improve Ebola treatment and control, and includes over 13,600 patient records of individuals infected and treated from 22 different Ebola treatment centres across Guinea, Sierra Leone, Liberia, and Nigeria. Patient data are available from treatment centre triage and admission, inpatient clinical observations, and outcomes, with outpatient follow-up available for some datasets. Data include signs and symptoms, pre-existing comorbidities, vital signs, laboratory testing, treatments, complications, dates of admission and discharge, mortality, viral strains, and other data. This publication describes characteristics of the EDP dataset, its architecture, methods for data access and tools for utilising the dataset.

9.
Nature ; 446(7132): 153-8, 2007 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-17344846

RESUMEN

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias/genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Humanos , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética
10.
BMJ Open ; 13(10): e074679, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898487

RESUMEN

INTRODUCTION: Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. There is an observed variation in the efficacy of the current first-line therapies across different regions. Such heterogeneity could be a function of host, parasite and drug factors. An individual participant data meta-analysis (IPD-MA) is planned to explore the determinants of treatment outcomes. METHODS AND ANALYSIS: The Infectious Diseases Data Observatory (IDDO) VL living systematic review (IDDO VL LSR) library is an open-access resource of all published therapeutic studies in VL since 1980. For this current review, the search includes all clinical trials published between 1 January 1980 and 2 May 2021. Studies indexed in the IDDO VL LSR library were screened for eligibility for inclusion in this IPD-MA. Corresponding authors and principal investigators of the studies meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Authors agreeing to participate in this collaborative research were requested to share the IPD using the IDDO VL data platform. The IDDO VL data platform currently holds data sets from clinical trials standardised to a common data format and provides a unique opportunity to identify host, parasite and drug determinants of treatment outcomes. Multivariable regression models will be constructed to identify determinants of therapeutic outcomes using generalised linear mixed-effects models accounting for within-study site clustering. ETHICS AND DISSEMINATION: This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (Exempt granted on 29 March 2023, OxTREC REF: IDDO) Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (Letter no: RMRI/EC/30/2022) on 04-07-2022. The results of this IPD-MA will be disseminated at conferences, IDDO website and any peer-reviewed publications. All publications will be open source. Findings of this research will be critically important for the control programmes at regional/global levels, policy makers and groups developing new VL treatments. PROSPERO REGISTRATION: CRD42021284622.


Asunto(s)
Leishmaniasis Visceral , Parásitos , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Metaanálisis como Asunto , Resultado del Tratamiento
11.
BMJ Open ; 13(12): e074841, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38101841

RESUMEN

INTRODUCTION: Visceral leishmaniasis (VL) is a parasitic disease with an estimated 30 000 new cases occurring annually. Despite anaemia being a common haematological manifestation of VL, the evolution of different haematological characteristics following treatment remains poorly understood. An individual participant data meta-analysis (IPD-MA) is planned to characterise the haematological dynamics in patients with VL. METHODS AND ANALYSIS: The Infectious Diseases Data Observatory (IDDO) VL data platform is a global repository of IPD from therapeutic studies identified through a systematic search of published literature (PROSPERO registration: CRD42021284622). The platform currently holds datasets from clinical trials standardised to a common data format. Corresponding authors and principal investigators of the studies indexed in the IDDO VL data platform meeting the eligibility criteria for inclusion were invited to be part of the collaborative IPD-MA. Mixed-effects multivariable regression models will be constructed to identify determinants of haematological parameters by taking clustering within study sites into account. ETHICS AND DISSEMINATION: This IPD-MA meets the criteria for waiver of ethical review as defined by the Oxford Tropical Research Ethics Committee (OxTREC) granted to IDDO, as the research consists of secondary analysis of existing anonymised data (exempt granted on 29 March 2023, OxTREC REF: IDDO). Ethics approval was granted by the ICMR-Rajendra Memorial Research Institute of Medical Sciences ethics committee (letter no.: RMRI/EC/30/2022) on 4 July 2022. The results of this analysis will be disseminated at conferences, the IDDO website and peer-reviewed publications in open-access journals. The findings of this research will be critically important for control programmes at regional and global levels, policymakers and groups developing new VL treatments. PROSPERO REGISTRATION NUMBER: CRD42021284622.


Asunto(s)
Leishmaniasis Visceral , Humanos , Leishmaniasis Visceral/tratamiento farmacológico , Revisiones Sistemáticas como Asunto , Metaanálisis como Asunto
12.
Cell Rep ; 36(11): 109698, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525349

RESUMEN

Human hematopoiesis is a dynamic process that starts in utero 18-21 days post-conception. Understanding the site- and stage-specific variation in hematopoiesis is important if we are to understand the origin of hematological disorders, many of which occur at specific points in the human lifespan. To unravel how the hematopoietic stem/progenitor cell (HSPC) compartment changes during human ontogeny and the underlying gene regulatory mechanisms, we compare 57,489 HSPCs from 5 different tissues spanning 4 developmental stages through the human lifetime. Single-cell transcriptomic analysis identifies significant site- and developmental stage-specific transitions in cellular architecture and gene regulatory networks. Hematopoietic stem cells show progression from cycling to quiescence and increased inflammatory signaling during ontogeny. We demonstrate the utility of this dataset for understanding aberrant hematopoiesis through comparison to two cancers that present at distinct time points in postnatal life-juvenile myelomonocytic leukemia, a childhood cancer, and myelofibrosis, which classically presents in older adults.


Asunto(s)
Linaje de la Célula/genética , Redes Reguladoras de Genes/genética , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/citología , Humanos , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Transcriptoma
13.
Leukemia ; 35(1): 90-106, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32242051

RESUMEN

MLL gene rearrangements (MLLr) are a common cause of aggressive, incurable acute lymphoblastic leukemias (ALL) in infants and children, most of which originate in utero. The most common MLLr produces an MLL-AF4 fusion protein. MLL-AF4 promotes leukemogenesis by activating key target genes, mainly through recruitment of DOT1L and increased histone H3 lysine-79 methylation (H3K79me2/3). One key MLL-AF4 target gene is PROM1, which encodes CD133 (Prominin-1). CD133 is a pentaspan transmembrane glycoprotein that represents a potential pan-cancer target as it is found on multiple cancer stem cells. Here we demonstrate that aberrant PROM1/CD133 expression is essential for leukemic cell growth, mediated by direct binding of MLL-AF4. Activation is controlled by an intragenic H3K79me2/3 enhancer element (KEE) leading to increased enhancer-promoter interactions between PROM1 and the nearby gene TAPT1. This dual locus regulation is reflected in a strong correlation of expression in leukemia. We find that in PROM1/CD133 non-expressing cells, the PROM1 locus is repressed by polycomb repressive complex 2 (PRC2) binding, associated with reduced expression of TAPT1, partially due to loss of interactions with the PROM1 locus. Together, these results provide the first detailed analysis of PROM1/CD133 regulation that explains CD133 expression in MLLr ALL.


Asunto(s)
Antígeno AC133/genética , Elementos de Facilitación Genéticos , Regulación Leucémica de la Expresión Génica , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Células Madre Neoplásicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Regiones Promotoras Genéticas , Biomarcadores de Tumor , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Silenciador del Gen , Humanos , Inmunofenotipificación , Leucemia/genética , Leucemia/metabolismo , Modelos Biológicos , Unión Proteica
14.
J Exp Med ; 218(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416891

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is a poor-prognosis childhood leukemia usually caused by RAS-pathway mutations. The cellular hierarchy in JMML is poorly characterized, including the identity of leukemia stem cells (LSCs). FACS and single-cell RNA sequencing reveal marked heterogeneity of JMML hematopoietic stem/progenitor cells (HSPCs), including an aberrant Lin-CD34+CD38-CD90+CD45RA+ population. Single-cell HSPC index-sorting and clonogenic assays show that (1) all somatic mutations can be backtracked to the phenotypic HSC compartment, with RAS-pathway mutations as a "first hit," (2) mutations are acquired with both linear and branching patterns of clonal evolution, and (3) mutant HSPCs are present after allogeneic HSC transplant before molecular/clinical evidence of relapse. Stem cell assays reveal interpatient heterogeneity of JMML LSCs, which are present in, but not confined to, the phenotypic HSC compartment. RNA sequencing of JMML LSC reveals up-regulation of stem cell and fetal genes (HLF, MEIS1, CNN3, VNN2, and HMGA2) and candidate therapeutic targets/biomarkers (MTOR, SLC2A1, and CD96), paving the way for LSC-directed disease monitoring and therapy in this disease.


Asunto(s)
Células Madre Hematopoyéticas/patología , Leucemia Mielomonocítica Juvenil/patología , Animales , Biomarcadores de Tumor/genética , Línea Celular , Femenino , Humanos , Leucemia Mielomonocítica Juvenil/genética , Masculino , Ratones , Mutación/genética , Células Madre Neoplásicas/patología , Transducción de Señal/genética , Regulación hacia Arriba/genética
15.
Cancer Res ; 66(8): 3987-91, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16618716

RESUMEN

Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/genética , Proteínas de Unión al ADN/genética , Dacarbazina/análogos & derivados , Glioma/genética , Mutación , Recurrencia Local de Neoplasia/genética , Anciano , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/enzimología , Dacarbazina/uso terapéutico , Femenino , Glioma/tratamiento farmacológico , Glioma/enzimología , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/enzimología , Proteínas Quinasas/genética , Temozolomida
16.
Cancer Res ; 65(17): 7591-5, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16140923

RESUMEN

Protein kinases are frequently mutated in human cancer and inhibitors of mutant protein kinases have proven to be effective anticancer drugs. We screened the coding sequences of 518 protein kinases (approximately 1.3 Mb of DNA per sample) for somatic mutations in 26 primary lung neoplasms and seven lung cancer cell lines. One hundred eighty-eight somatic mutations were detected in 141 genes. Of these, 35 were synonymous (silent) changes. This result indicates that most of the 188 mutations were "passenger" mutations that are not causally implicated in oncogenesis. However, an excess of approximately 40 nonsynonymous substitutions compared with that expected by chance (P = 0.07) suggests that some nonsynonymous mutations have been selected and are contributing to oncogenesis. There was considerable variation between individual lung cancers in the number of mutations observed and no mutations were found in lung carcinoids. The mutational spectra of most lung cancers were characterized by a high proportion of C:G > A:T transversions, compatible with the mutagenic effects of tobacco carcinogens. However, one neuroendocrine cancer cell line had a distinctive mutational spectrum reminiscent of UV-induced DNA damage. The results suggest that several mutated protein kinases may be contributing to lung cancer development, but that mutations in each one are infrequent.


Asunto(s)
Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Mutación , Proteínas Quinasas/genética , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Tumor Carcinoide/enzimología , Tumor Carcinoide/genética , Carcinoma de Células Grandes/enzimología , Carcinoma de Células Grandes/genética , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Análisis Mutacional de ADN , Humanos
17.
Mol Cancer Ther ; 5(11): 2606-12, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17088437

RESUMEN

The panel of 60 human cancer cell lines (the NCI-60) assembled by the National Cancer Institute for anticancer drug discovery is a widely used resource. The NCI-60 has been characterized pharmacologically and at the molecular level more extensively than any other set of cell lines. However, no systematic mutation analysis of genes causally implicated in oncogenesis has been reported. This study reports the sequence analysis of 24 known cancer genes in the NCI-60 and an assessment of 4 of the 24 genes for homozygous deletions. One hundred thirty-seven oncogenic mutations were identified in 14 (APC, BRAF, CDKN2, CTNNB1, HRAS, KRAS, NRAS, SMAD4, PIK3CA, PTEN, RB1, STK11, TP53, and VHL) of the 24 genes. All lines have at least one mutation among the cancer genes examined, with most lines (73%) having more than one. Identification of those cancer genes mutated in the NCI-60, in combination with pharmacologic and molecular profiles of the cells, will allow for more informed interpretation of anticancer agent screening and will enhance the use of the NCI-60 cell lines for molecularly targeted screens.


Asunto(s)
Línea Celular Tumoral , Genes Relacionados con las Neoplasias , Mutación , Análisis Mutacional de ADN , Exones , Eliminación de Gen , Perfilación de la Expresión Génica , Homocigoto , Humanos , Sitios de Empalme de ARN
18.
Autism Res ; 9(1): 9-16, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26052927

RESUMEN

Rare de novo and inherited copy number variations (CNVs) have been implicated in autism spectrum disorder (ASD) risk. However, the genetic underpinnings of ASD remain unknown in more than 80% of cases. Therefore, identification of novel candidate genes and corroboration of known candidate genes may broaden the horizons of determining genetic risk alleles, and subsequent development of diagnostic testing. Here, using genotyping arrays, we characterized the genetic architecture of rare CNVs (<1% frequency) in a Finnish case-control dataset. Unsurprisingly, ASD cases harbored a significant excess of rare, large (>1 Mb) CNVs and rare, exonic CNVs. The exonic rare de novo CNV rate (∼22.5%) seemed higher compared to previous reports. We identified several CNVs in well-known ASD regions including GSTM1-5, DISC1, FHIT, RBFOX1, CHRNA7, 15q11.2, 15q13.2-q13.3, 17q12, and 22q11.21. Additionally, several novel candidate genes (BDKRB1, BDKRB2, AP2M1, SPTA1, PTH1R, CYP2E1, PLCD3, F2RL1, UQCRC2, LILRB3, RPS9, and COL11A2) were identified through gene prioritization. The majority of these genes belong to neuroactive ligand-receptor interaction pathways, and calcium signaling pathways, thus suggesting that a subset of these novel candidate genes may contribute to ASD risk. Furthermore, several metabolic pathways like caffeine metabolism, drug metabolism, retinol metabolism, and calcium-signaling pathway were found to be affected by the rare exonic ASD CNVs. Additionally, biological processes such as bradykinin receptor activity, endoderm formation and development, and oxidoreductase activity were enriched among the rare exonic ASD CNVs. Overall, our findings may add data about new genes and pathways that contribute to the genetic architecture of ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN/genética , Estudios de Casos y Controles , Finlandia , Predisposición Genética a la Enfermedad/genética , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA