RESUMEN
A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.
Asunto(s)
Ecosistema , Fósiles , Ecología , Plantas , FenotipoRESUMEN
The United Nations System of Environmental-Economic Accounting Ecosystem Accounting (SEEA EA) framework is the international standard for ecosystem accounting. To date, application of SEEA EA has been predominantly at large scales, usually at landscape and national levels. However, many environmental management decisions are taken locally, in site-specific contexts. While the use of SEEA EA continues to develop at all scales, there is currently no widely endorsed methodology for employing SEEA EA at local scales, such as the site level. We present a methodology for developing site-level ecosystem accounts, describing the important decisions at each step of the process. We also provide two case studies that demonstrate the context-dependent nature of the decision-making process of ecosystem accounting at small scales. The two major challenges for site-level accounting are stakeholder engagement and data availability. As the use of SEEA EA continues to increase in policy and decision-making processes worldwide, there is a need for local-scale case studies that adapt this methodology across a broad range of contexts. Our case studies provide some of the first published examples of the application of SEEA EA at the site level and are intended to promote consistent implementation of ecosystem accounting across scales.
Asunto(s)
Conservación de los Recursos Naturales , Toma de Decisiones , Ecosistema , Naciones UnidasRESUMEN
When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.
Asunto(s)
Flujo Génico , Variación Genética , Plantago/genética , Demografía , Especies Introducidas , Filogenia , Plantago/químicaRESUMEN
Although cryobanking represents a powerful conservation tool, a lack of standardized information on the species represented in global cryobanks, and inconsistent prioritization of species for future sampling, hinder the conservation potential of cryobanking, resulting in missed conservation opportunities. We analyze the representation of amphibian, bird, mammal, and reptile species within the San Diego Zoo Wildlife Alliance Frozen Zoo® living cell collection (as of April 2019) and implement a qualitative framework for the prioritization of species for future sampling. We use global conservation assessment schemes (including the International Union for Conservation of Nature (IUCN) Red List of Threatened Species™, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), the Alliance for Zero Extinction, the EDGE of Existence, and Climate Change Vulnerability), and opportunities for sample acquisition from the global zoo and aquarium community, to identify priority species for cryobanking. We show that 965 species, including 5% of all IUCN Red List "Threatened" amphibians, birds, mammals, and reptiles, were represented in the collection and that sampling from within existing zoo and aquarium collections could increase representation to 16.6% (by sampling an additional 707 "Threatened" species). High-priority species for future cryobanking efforts include the whooping crane (Grus americana), crested ibis (Nipponia nippon), and Siberian crane (Leucogeranus leucogeranus). Each of these species are listed under every conservation assessment scheme and have ex situ populations available for sampling. We also provide species prioritizations based on subsets of these assessment schemes together with sampling opportunities from the global zoo and aquarium community. We highlight the difficulties in obtaining in situ samples, and encourage the formation of a global cryobanking database together with the establishment of new cryobanks in biodiversity-rich regions.
Asunto(s)
Comercio , Conservación de los Recursos Naturales , Animales , Conservación de los Recursos Naturales/métodos , Animales de Zoológico , Internacionalidad , Especies en Peligro de Extinción , Biodiversidad , Anfibios , Reptiles , Aves , MamíferosRESUMEN
As global wildlife populations continue to decline, the health and sustainability of ex situ populations in zoos and aquariums have become increasingly important. However, the majority of managed ex situ populations are not meeting sustainability criteria and are not viable in the long term. Historically, ex situ flamingo (Phoenicopteriformes) populations have shown low rates of reproductive success and improvements are needed for long-term viability. Both flock size and environmental suitability have previously been shown to be important determinants of ex situ flamingo reproductive success in a limited number of sites in some species. Here we combined current and historic globally shared zoological records for four of the six extant species of flamingo (Phoeniconaias minor, Phoenicopterus chilensis, Phoenicopterus roseus, and Phoenicopterus ruber) to analyze how flock size, structure, and climatic variables have influenced reproductive success in ex situ flamingo populations at 540 zoological institutions from 1990 to 2019. Flock size had a strong nonlinear relationship with reproductive success for all species, with flock sizes of 41-100 birds necessary to achieve ca. 50% probability of reproduction. Additionally, an even sex ratio and the introduction of new individuals to a flock both increased ex situ reproductive success in some cases, while climatic variables played a limited role. We demonstrate the conservation management potential from globally shared zoological data and provide species-specific management recommendations to increase the reproductive success of global ex situ flamingo populations: minimum flock sizes should be increased, and we encourage greater collaboration between individual institutions and regional associations in exchanging birds between flocks.
Asunto(s)
Animales Salvajes , Animales de Zoológico , Animales , Aves , ReproducciónRESUMEN
Population ecologists develop theoretical and pragmatic knowledge of how and why populations change or remain stable, how life histories evolve and devise management strategies for populations of concern. However, forecasting the effects of global change or recommending management strategies is often urgent, requiring ecologists to work without detailed local evidence while using data and models from outside the focal location or species. Here we explore how the comparative ecology of populations, population macroecology, can be used to develop generalisations within and between species across different scales, using available demographic, environmental, life history, occurrence and trait data. We outline the strengths and weaknesses of using broad climatic variables and suitability inferred from probability of occupancy models to represent environmental variation in comparative analyses. We evaluate the contributions of traits, environment and their interaction as drivers of life history strategy. We propose that insights from life history theory, together with the adaptive capacity of populations and individuals, can inform on 'persist in place' vs 'shift in space' responses to changing conditions. As demographic data accumulate at landscape and regional scales for single species, and throughout plant phylogenies, we will have new opportunities for testing macroecological generalities within and across species.
Asunto(s)
Biodiversidad , Ecosistema , Ecología , Filogenia , PlantasRESUMEN
How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.
Asunto(s)
Biodiversidad , Pradera , Modelos Biológicos , Plantas/clasificación , Plantas/metabolismo , Conducta Competitiva , GeografíaRESUMEN
Life history strategies are fundamental to the ecology and evolution of organisms and are important for understanding extinction risk and responses to global change. Using global datasets and a multiple response modelling framework we show that trait-climate interactions are associated with life history strategies for a diverse range of plant species at the global scale. Our modelling framework informs our understanding of trade-offs and positive correlations between elements of life history after accounting for environmental context and evolutionary and trait-based constraints. Interactions between plant traits and climatic context were needed to explain variation in age at maturity, distribution of mortality across the lifespan and generation times of species. Mean age at maturity and the distribution of mortality across plants' lifespan were under evolutionary constraints. These findings provide empirical support for the theoretical expectation that climatic context is key to understanding trait to life history relationships globally.
Asunto(s)
Rasgos de la Historia de Vida , Evolución Biológica , Ecología , Fenotipo , PlantasRESUMEN
Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.
Asunto(s)
Sequías , Pradera , Biodiversidad , Biomasa , Ecosistema , Europa (Continente)RESUMEN
Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.
Asunto(s)
Biodiversidad , Eutrofización , Fertilizantes/efectos adversos , Poaceae , Animales , Biomasa , Clima , Eutrofización/efectos de los fármacos , Geografía , Cooperación Internacional , Poaceae/efectos de los fármacos , Poaceae/fisiología , Factores de TiempoRESUMEN
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Asunto(s)
Biodiversidad , Eutrofización/efectos de la radiación , Herbivoria/fisiología , Luz , Plantas/metabolismo , Plantas/efectos de la radiación , Poaceae , Clima , Eutrofización/efectos de los fármacos , Geografía , Actividades Humanas , Internacionalidad , Nitrógeno/metabolismo , Nitrógeno/farmacología , Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/fisiología , Poaceae/efectos de la radiación , Factores de TiempoRESUMEN
The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.
Asunto(s)
Desarrollo de la Planta , Plantas/clasificación , Reproducción , Ecosistema , Ambiente , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Dinámica Poblacional , Crecimiento Demográfico , Madera/crecimiento & desarrolloRESUMEN
Correlative species distribution models are based on the observed relationship between species' occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide - as measured by in situ population growth rate, its temporal variation and extinction risk - was not correlated with climate suitability. However, correlations of demographic processes underpinning population performance with climate suitability indicated both resistance and vulnerability pathways of population responses to climate: in less suitable climates, plants experienced greater retrogression (resistance pathway) and greater variability in some demographic rates (vulnerability pathway). While a range of demographic strategies occur within species' climatic niches, demographic strategies are more constrained in climates predicted to be less suitable.
Asunto(s)
Cambio Climático , Plantas , DemografíaRESUMEN
Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict population performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance. Models including only geographic proximity and phylogeny explained 5-40% of the variation in four key metrics of population performance. However, there was poor extrapolation between species and extrapolation was limited to geographic scales smaller than those at which landscape scale threats typically occur. Thus, demographic information should only be extrapolated with caution. Capturing demography at scales relevant to landscape level threats will require more geographically extensive sampling.
Asunto(s)
Clima , Ecosistema , Filogenia , Fenómenos Fisiológicos de las Plantas , Plantas/clasificación , Plantas/genética , Bases de Datos Factuales , Demografía , Modelos Estadísticos , Especificidad de la EspecieRESUMEN
UNLABELLED: The open-data scientific philosophy is being widely adopted and proving to promote considerable progress in ecology and evolution. Open-data global data bases now exist on animal migration, species distribution, conservation status, etc. However, a gap exists for data on population dynamics spanning the rich diversity of the animal kingdom world-wide. This information is fundamental to our understanding of the conditions that have shaped variation in animal life histories and their relationships with the environment, as well as the determinants of invasion and extinction. Matrix population models (MPMs) are among the most widely used demographic tools by animal ecologists. MPMs project population dynamics based on the reproduction, survival and development of individuals in a population over their life cycle. The outputs from MPMs have direct biological interpretations, facilitating comparisons among animal species as different as Caenorhabditis elegans, Loxodonta africana and Homo sapiens. Thousands of animal demographic records exist in the form of MPMs, but they are dispersed throughout the literature, rendering comparative analyses difficult. Here, we introduce the COMADRE Animal Matrix Database, an open-data online repository, which in its version 1.0.0 contains data on 345 species world-wide, from 402 studies with a total of 1625 population projection matrices. COMADRE also contains ancillary information (e.g. ecoregion, taxonomy, biogeography, etc.) that facilitates interpretation of the numerous demographic metrics that can be derived from its MPMs. We provide R code to some of these examples. SYNTHESIS: We introduce the COMADRE Animal Matrix Database, a resource for animal demography. Its open-data nature, together with its ancillary information, will facilitate comparative analysis, as will the growing availability of databases focusing on other aspects of the rich animal diversity, and tools to query and combine them. Through future frequent updates of COMADRE, and its integration with other online resources, we encourage animal ecologists to tackle global ecological and evolutionary questions with unprecedented sample size.
Asunto(s)
Bases de Datos Factuales , Demografía , Ecología/métodos , Modelos Biológicos , AnimalesRESUMEN
Substantial advances have been made in our understanding of the movement of species, including processes such as dispersal and migration. This knowledge has the potential to improve decisions about biodiversity policy and management, but it can be difficult for decision makers to readily access and integrate the growing body of movement science. This is, in part, due to a lack of synthesis of information that is sufficiently contextualized for a policy audience. Here, we identify key species movement concepts, including mechanisms, types, and moderators of movement, and review their relevance to (1) national biodiversity policies and strategies, (2) reserve planning and management, (3) threatened species protection and recovery, (4) impact and risk assessments, and (5) the prioritization of restoration actions. Based on the review, and considering recent developments in movement ecology, we provide a new framework that draws links between aspects of movement knowledge that are likely the most relevant to each biodiversity policy category. Our framework also shows that there is substantial opportunity for collaboration between researchers and government decision makers in the use of movement science to promote positive biodiversity outcomes.
Asunto(s)
Distribución Animal/fisiología , Conservación de los Recursos Naturales/métodos , Ecología/métodos , Formulación de Políticas , Migración Animal/fisiología , Animales , Biodiversidad , Conservación de los Recursos Naturales/legislación & jurisprudencia , Toma de Decisiones , Regulación Gubernamental , Guías como Asunto , Medición de RiesgoRESUMEN
Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.
Asunto(s)
Distribución Animal , Arrecifes de Coral , Peces/genética , Genética de Población , Animales , Evolución Biológica , Larva/genética , Filogenia , ReproducciónRESUMEN
The efficient management of diseases, pests, or endangered species is an important global issue faced by agencies constrained by limited resources. The management challenge is even greater when organisms are difficult to detect. We show how to prioritize management and survey effort across time and space for networks of susceptible-infected-susceptible subpopulations. We present simple and robust rules of thumb for protecting desirable, or eradicating undesirable, subpopulations connected in typical network patterns (motifs). We further demonstrate that these rules can be generalized to larger networks when motifs are combined in more complex formations. Results show that the best location to manage or survey a pest or a disease on a network is also the best location to protect or survey an endangered species. The optimal starting point in a network is the fastest motif to manage, where line, star, island, and cluster motifs range from fast to slow. Managing the most connected node at the right time and maintaining the same management direction provide advantages over previously recommended outside-in strategies. When a species or disease is not detected and our belief in persistence decreases, our results recommend shifting resources toward management or surveillance of the most connected nodes. Our analytic approximation provides guidance on how long we should manage or survey networks for hard-to-detect organisms. Our rules take into account management success, dispersal, economic cost, and imperfect detection and offer managers a practical basis for managing networks relevant to many significant environmental, biosecurity, and human health issues.
Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Animales , Conservación de los Recursos Naturales/economía , Costos y Análisis de Costo , Especies en Peligro de Extinción , Ambiente , Humanos , Control de Plagas , Dinámica PoblacionalRESUMEN
Native and introduced megaherbivores similarly affect plant diversity and abundance.