Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 378(2176): 20190268, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32623994

RESUMEN

Plastics have transformed our modern world. With a range of outstanding properties, they are used in an ever-widening range of applications. However, the linear economy of their use means that a large volume of plastics is discarded after use. It is believed that approximately 80% of the estimated total 6.3 Bt of plastics ever produced have been discarded, representing not only a huge loss of valuable resources, but mismanaged waste is also the origin of an ever-increasing environmental disaster. Strategies to prevent loss of materials resources and damage to the environment are elements of a circular plastics economy that aims to maintain plastics at their highest value for the longest time possible and at the same time improve the economy and prevent detrimental environmental impact. The latter in particular is driving recent changes in policies and legislation across the world that are rapidly being introduced in order to solve these environmental issues. The achievement of a circular economy will require not only innovative technical developments, but also major economic investment and changes to business practice coupled with significant changes in social behaviour. This paper summarizes the complex and highly interrelated technical issues and provides an overview of the major challenges, potential solutions and opportunities required to achieve and operate a circular plastics economy. This article is part of a discussion meeting issue 'Science to enable the circular economy'.

2.
Npj Mater Degrad ; 7(1): 33, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37096160

RESUMEN

The use of PPE has drastically increased because of the SARS-CoV-2 (COVID-19) pandemic as disposable surgical face masks made from non-biodegradable polypropylene (PP) polymers have generated a significant amount of waste. In this work, a low-power plasma method has been used to degrade surgical masks. Several analytical techniques (gravimetric analysis, scanning electron microscopy (SEM), attenuated total reflection-infra-red spectroscopy (ATR-IR), x-ray photoelectron spectroscopy (XPS), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and wide-angle x-ray scattering (WAXS)) were used to evaluate the effects of plasma irradiation on mask samples. After 4 h of irradiation, an overall mass loss of 63 ± 8%, through oxidation followed by fragmentation, was observed on the non-woven 3-ply surgical mask, which is 20 times faster than degrading a bulk PP sample. Individual components of the mask also showed different degradation rates. Air plasma clearly represents an energy-efficient tool for treating contaminated PPE in an environmentally friendly approach.

3.
Nanotechnology ; 22(22): 225302, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21464523

RESUMEN

We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

4.
J Phys Chem B ; 113(19): 6604-12, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19358560

RESUMEN

We have used molecular modeling of both random and blocky hydrogel networks of poly (N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate) with VP:HEMA=37:13 composition to investigate the effect of the monomeric sequence on the mechanical properties. The degrees of monomer sequence randomness for the random and the blocky copolymers were 1.170 and 0.104, respectively, and the degree of polymerization was set as 50. The equilibrated density of the dry gel network was 0.968+/-0.007 and 0.911+/-0.007 g/cm3 for the random and the blocky sequences, respectively. In the partially hydrated state with 10 wt % water content, the effect of the monomeric sequence causes more distinct differences in density of 1.004+/-0.007 and 0.916+/-0.009 g/cm3 for the random and the blocky copolymer network, respectively. We observed that in such networks, the water molecules are associated more closely with the N-vinyl-2-pyrrolidone than with the hydroxyethyl methacrylate moieties, which is consistent with results from quantum mechanical solvation free energy calculations. By simulating a compressive deformation of the dry gels up to 80% strain, we found that the random sequence network develops higher stress levels than the blocky network. We also found that stress reduction occurs in the random sequence network due to the hydration, which is not evident in the blocky sequence network. This difference in stress reduction between the random and the blocky sequence networks is due to the difference in the structural rearrangement of monomers in the presence of water during deformation. The random sequence network is able to undergo much more efficient rearrangement of HEMA units than in the blocky sequence network.

5.
Integr Mater Manuf Innov ; 6(2): 147-159, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31976206

RESUMEN

The rapid development of robust, reliable, and reduced-order process-structure evolution linkages that take into account hierarchical structure are essential to expedite the development and manufacturing of new materials. Towards this end, this paper lays a theoretical framework that injects the established time series analysis into the recently developed materials knowledge systems (MKS) framework. This new framework is first presented and then demonstrated on an ensemble dataset obtained using small-angle X-ray scattering on semi-crystalline linear low density polyethylene films from a synchrotron X-ray scattering experiment.

6.
ACS Appl Mater Interfaces ; 9(15): 13357-13368, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28379681

RESUMEN

The performance of devices relying on organic electronic materials, such as organic field-effect transistors (OFET) and organic photovoltaics (OPV), is strongly correlated to the morphology of the conjugated material in thin films. For instance, several factors such as polymer solubility, weak intermolecular forces between polymers and fullerene derivatives, and film drying time impact phase separation in the active layer of a bulk heterojunction OPV device. In an effort to probe the influence of polymer assembly on morphology of polymer thin films and phase separation with fullerene derivatives, five terthiophene-alt-isoindigo copolymers were synthesized with alkyl side-chains of varying lengths and branching on the terthiophene unit. These P[T3(R)-iI] polymers were designed to have similar optoelectronic properties but different solubilities in o-dichlorobenzene and were predicted to have different tendencies for crystallization. All polymers with linear alkyl chains exhibit similar thin film morphologies as investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM). The main differences in electronic and morphological properties arise when P[T3(R)-iI] is substituted with branched 2-ethylhexyl (2EH) side-chains. The bulky 2EH substituents lead to a blue-shifted absorption, a lower ionization potential, and reduced ordering in polymer thin films. The five P[T3-iI] derivatives span hole mobilities from 1.5 × 10-3 to 2.8 × 10-2 cm2 V-1 s-1 in OFET devices. In OPV devices, the 2EH-substituted polymers yield open-circuit voltages of 0.88 V in BHJ devices yet low short-circuit currents of 0.8 mA cm-2, which is explained by the large phase separation observed by AFM in blends of P[T3(2EH)-iI] with PC71BM. In these P[T3(R)-iI] systems, the propensity for the polymers to self-assemble prior to aggregation of PC71BM molecules was key to achieving fine phase separation and increased short-circuit currents, eventually resulting in power conversion efficiencies of 5% in devices processed using a single solvent.

7.
ACS Appl Mater Interfaces ; 4(6): 3111-21, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22704007

RESUMEN

Among the physical and chemical attributes of the nanocomposite components and their interactions that contribute to the ultimate material properties, nanoparticle arrangement in the matrix is a key contributing factor that has been targeted through materials choices and processing strategies in numerous previous studies. Often, the desired nanocomposite morphology contains individually dispersed and distributed nanoparticles. In this research, a phase-segregated morphology containing nanoparticle networks was studied. A model nanocomposite system composed of calcium phosphate nanoparticles and a poly(3-hydroxybutyrate) matrix was produced to understand how polymer crystallization and crystal structure can facilitate the formation of a phase-segregated morphology containing nanoparticle networks. Two chemically similar calcium phosphate nanoparticle systems with different shapes, near-spherical and nanofiber, were synthesized for use in the nanocomposites. The different shapes were used independently in nanocomposites in an attempt to understand the effect of the nanoparticle shapes on crystallization-mediated nanoparticle network formation. The resulting nanocomposites were characterized to establish the effects of component interactions on the polymer structure. Additionally from the viscoelastic properties, structure-property relationships in these materials can be defined as a function of nanoparticle shape and concentration. The results of this research suggest that when the nanocomposite components are not strongly interacting, polymer crystallization may be used as a forced assembly method for nanoparticle networks. Such a methodology has applications to the design of functional polymer nanocomposites such as biomedical implant materials and organic photovoltaic materials where judicious choice of nanoparticle-polymer pairs and control of polymer crystal nucleation and growth processes could be used to control the length scale of phase segregation.

8.
Plast Reconstr Surg ; 129(1): 79-88, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22186501

RESUMEN

BACKGROUND: The advent of self-inflating hydrogel tissue expanders heralded a significant advance in the reconstructive potential of this technique. Their use, however, is limited by their uncontrolled isotropic (i.e., uniform in all directions) expansion. METHODS: Anisotropy (i.e., directional dependence) was achieved by annealing a hydrogel copolymer of poly(methyl methacrylate-co-vinyl pyrrolidone) under a compressive load for a specified time period. The expansion ratio is dictated by the percentage of vinyl pyrrolidone content and the degree of compression. The expansion rate is modified by incorporating the polymer within a silicone membrane. The in vivo efficacy of differing prototype devices was investigated in juvenile pigs under United Kingdom Home Office Licence. The devices were implanted within a submucoperiosteal pocket in a total of six porcine palates; all were euthanized by 6 weeks after implantation. A longitudinal volumetric assessment of the expanded tissue was conducted, in addition to postmortem analysis of the bony and mucoperiosteal palatal elements. RESULTS: Uncoated devices caused excessive soft-tissue expansion that resulted in mucoperiosteal ulceration, thus necessitating animal euthanasia. The silicone-coated devices produced controlled soft-tissue expansion over the 6-week study period. There was a statistically significant increase in the volume of expanded soft tissue with no evidence of a significant acute inflammatory response to the implant, although peri-implant capsule formation was observed. Attenuation of the bony palatal shelf was noted. CONCLUSION: A unique anisotropic hydrogel device capable of controlled expansion has been developed that addresses a number of the shortcomings of the technology hitherto available.


Asunto(s)
Paladar Duro , Dispositivos de Expansión Tisular , Expansión de Tejido/métodos , Animales , Anisotropía , Técnica de Impresión Dental , Femenino , Hidrogel de Polietilenoglicol-Dimetacrilato , Polimetil Metacrilato , Diseño de Prótesis , Pirrolidinonas , Siliconas , Porcinos , Expansión de Tejido/instrumentación
9.
Adv Mater ; 24(32): 4445-50, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22786719

RESUMEN

A new solution-processable small-molecule containing electron-poor naphthalene diimide and tetrazine moieties has been synthesized. The optimized spin-coated n-channel OFETs on glass substrate shows electron mobility value up to 0.15 cm(2) V(-1) s(-1) . Inkjet-printed OFETs are fabricated in ambient atmosphere on flexible plastic substrates, which exhibits an electron mobility value up to 0.17 cm(2) V(-1) s(-1) and also shows excellent environmental and operational stability.


Asunto(s)
Imidas/química , Naftalenos/química , Transistores Electrónicos , Electrodos , Electrones , Soluciones/química
10.
J Phys Chem B ; 115(29): 8989-95, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21696139

RESUMEN

The origin of the miscibility between C(60) fullerene and a series of phenyl vinyl polymers has been investigated using a combination of wide-angle X-ray (WAXS) and neutron (WANS) scattering and density functional theory (DFT) computational modeling. The solubility limit of the C(60) in the polymers was found to increase nonlinearly with increasing phenyl rings in the side groups from 1 wt % in polystyrene (PS) to 12 wt % in poly(9-vinylphenanthrene) (P9VPh). The DFT calculations showed that the polymer interacts with the fullerene preferentially via the phenyl groups in these vinyl polymers. However, due to the backbone these phenyl groups are unable to form the energetically favorable T-junction or planar π-π stacks with the fullerene and are randomly oriented to the cage. The nonlinear increase in solubility is believed to be associated with shape conformity of the three-ring phenanthrene to the curvature of the fullerene.

11.
Acta Biomater ; 6(6): 2003-12, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19925890

RESUMEN

This paper presents the preparation and absorption performance of iodixanol-imprinted polymers in aqueous and blood plasma media in vitro for biomedical applications. The imprinted polymers were prepared by non-covalent imprinting of iodixanol in a matrix of poly(4-vinylpyridine) crosslinked by ethylene glycol dimethacrylate. The binding capacities (BCs) were investigated as a function of template-to-monomer, as well as monomer-to-crosslinker, ratios in the polymerization, and the solvent type. The highest BC of iodixanols achieved from the optimized imprinted polymer in the aqueous solution is 284mgg(-1) dry polymer with an imprinting effect (IE) 8.8 times higher than that of the non-imprinted polymer. In blood plasma, the BC of this polymer is slightly reduced to 232mgg(-1) with a smaller IE 4.3 times higher than that of the control polymer. The BCs of molecularly imprinted polymers as a function of the initial assay solution concentration as well as the examination time are also addressed. Surface analyses were additionally performed to characterize the surface morphologies and porosities of synthetic polymers. This work has demonstrated the feasibility of molecular imprinting of iodixanol, and the observed absorption performance of the imprinted polymers is encouraging for biomedical applications.


Asunto(s)
Materiales Biocompatibles/química , Plasma/química , Polímeros/química , Ácidos Triyodobenzoicos/química , Agua/química , Absorción , Cristalización/métodos , Humanos , Ensayo de Materiales , Porosidad , Propiedades de Superficie
12.
ACS Appl Mater Interfaces ; 2(6): 1642-7, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20507070

RESUMEN

Nanocomposites of carbon nanotube fibers have been prepared using controlled polymer crystallization confined in nanotube aerogel fibers. The polyethylene nanocomposites have been investigated by means of polarized optical microscopy (POM), scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD). The individual nanotubes are periodically decorated with polyethylene nanocrystals, forming aligned hybrid shish-kebab nanostructures. After melting and recrystallization, transcrystalline lamellae connecting the adjacent aligned nanotubes develop. Microstructural analysis shows that the nanotubes can nucleate the growth of both orthorhombic and monoclinic crystals of polyethylene in the quiescent state. The tensile strength, modulus, and axial electrical conductivity of these polyethylene/CNT composite fibers are as high as 600 MPa, 60 GPa, and 5000 S/m, respectively.


Asunto(s)
Nanocompuestos/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Polímeros/química , Cristalización , Módulo de Elasticidad , Electroquímica/métodos , Microscopía Electrónica de Rastreo/métodos , Nanoestructuras , Óptica y Fotónica , Resistencia a la Tracción , Difracción de Rayos X
13.
Rev Sci Instrum ; 81(6): 065106, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20590268

RESUMEN

A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2 x 10(5) s(-1) are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

14.
Biomaterials ; 30(30): 6130-41, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656562

RESUMEN

Poly (N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate) (P(VP-co-HEMA)) hydrogel system with a composition of VP:HEMA=37:13 was studied using molecular dynamics simulations in order to investigate the effect of the water content on the equilibrium structures and the mechanical properties. The degree of randomness of the monomer sequence for the random and the blocky copolymers, were 1.170 and 0.104, respectively, and the degree of polymerization was fixed at 50. The equilibrated density of the hydrogel was found to be larger for the random sequence than for the blocky sequence at low water contents (<40 wt%), but this density difference decreased with increasing water content. The pair correlation function analysis shows that VP is more hydrophilic than HEMA and that the random sequence hydrogel is solvated more than the blocky sequence hydrogel at low water content, which disappears with increasing water content. Correspondingly, the water structure is more disrupted by the random sequence hydrogel at low water content but eventually develops the expected bulk water-like structure with increasing water content. From mechanical deformation simulations, stress-strain analysis showed that the VP is found to relax more efficiently, especially in the blocky sequence, so that the blocky sequence hydrogel shows less stress levels compared to the random sequence hydrogel. As the water content increases, the stress level becomes identical for both sequences. The elastic moduli of the hydrogels calculated from the constant strain energy minimization show the same trend with the stress-strain analysis.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Polihidroxietil Metacrilato/análogos & derivados , Povidona/análogos & derivados , Agua/química , Simulación por Computador , Sistemas de Liberación de Medicamentos , Módulo de Elasticidad , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Modelos Químicos , Modelos Estadísticos , Conformación Molecular , Peso Molecular , Polihidroxietil Metacrilato/química , Polímeros/química , Povidona/química , Estrés Mecánico
15.
Biophys J ; 85(4): 2624-32, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14507725

RESUMEN

X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.


Asunto(s)
Modelos Moleculares , Proteína B Asociada a Surfactante Pulmonar/química , Agua/química , Difracción de Rayos X/métodos , Animales , Bovinos , Simulación por Computador , Difracción de Neutrones , Conformación Proteica , Estructura Terciaria de Proteína , Proteína B Asociada a Surfactante Pulmonar/clasificación , Ovinos , Soluciones , Especificidad de la Especie , Tensión Superficial
16.
J Am Chem Soc ; 124(33): 9712-3, 2002 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-12175222

RESUMEN

Addition of 4,4'-bipyridyl to a solution of a meso-meso butadiyne-linked conjugated zinc porphyrin polymer in chloroform results in self-assembly of a double-strand ladder complex. Excess ligand causes this duplex to dissociate into single strands. These binding processes were elucidated by near-IR and NMR titrations, as well as by gel permeation chromatography and small-angle neutron scattering. Ladder-making and -breaking are highly cooperative, with Hill coefficients of 3.0 and 3.7, respectively. Self-assembly of the ladder holds the pi-system in a planar conformation, enhancing the conjugation, resulting in a red-shift and intensification of the Q-band. Both the real and imaginary parts of the third-order susceptibility per macrocycle are amplified by ladder formation, as revealed by degenerate four-wave mixing measurements at 1064 nm. At this wavelength, the double-strand polymer complex has |chi(3)xyyx| = 6.0 x 10-17 m2 V-2 per macrocycle, compared with 6.6 x 10-18 m2 V-2 for the single-strand polymer under the same conditions.

18.
Science ; 302(5652): 1904-5, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14671284
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA