Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Pulm Med ; 24(1): 127, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475751

RESUMEN

BACKGROUND: The 2017 ATS/ERS technical standard for measuring the single-breath diffusing capacity (DLCO) proposed the "rapid-gas-analyzer" (RGA) or, equivalently, "total-breath" (TB) method for the determination of total lung capacity (TLC). In this study, we compared DLCO and TLC values estimated using the TB and conventional method, and how estimated TLC using these two methods compared to that determined by body plethysmography. METHOD: A total of 95 people with COPD (GOLD grades 1-4) and 23 healthy subjects were studied using the EasyOne Pro (ndd Medical Technologies, Switzerland) and Master Screen Body (Vyaire Medical, Höchberg, Germany). RESULTS: On average the TB method resulted in higher values of DLCO (mean ± SD Δ = 0.469 ± 0.267; 95%CI: 0.420; 0.517 mmol*min-1*kPa-1) and TLC (Δ = 0.495 ± 0.371; 95%CI: 0.427; 0.562 L) compared with the conventional method. In healthy subjects the ratio between TB and conventional DLCO was close to one. TLC estimated using both methods was lower than that determined by plethysmography. The difference was smaller for the TB method (Δ = 1.064 ± 0.740; 95%CI: 0.929; 1.199 L) compared with the conventional method (Δ = 1.558 ± 0.940; 95%CI: 1.387; 1.739 L). TLC from body plethysmography could be estimated as a function of TB TLC and FEV1 Z-Score with an accuracy (normalized root mean square difference) of 9.1%. CONCLUSION: The total-breath method yielded higher values of DLCO and TLC than the conventional analysis, especially in subjects with COPD. TLC from the total-breath method can also be used to estimate plethysmographic TLC with better accuracy than the conventional method. The study is registered under clinicaltrial.gov NCT04531293.


Asunto(s)
Capacidad de Difusión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Alemania , Pruebas de Función Respiratoria , Capacidad Pulmonar Total
2.
J Appl Physiol (1985) ; 136(3): 460-471, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38269412

RESUMEN

Multiple-breath washout (MBW) is an established technique to assess functional residual capacity (FRC) and ventilation inhomogeneity in the lung. Indirect calculation of nitrogen concentration requires accurate measurement of gas concentrations. To investigate the accuracy of the CO2 concentration and molar mass (MM) values used for the indirect calculation of nitrogen concentration in a commercial MBW device [EasyOne Pro LAB (EOPL), ndd Medizintechnik AG, Switzerland] and its impact on outcomes. We used high-precision gas mixtures to evaluate CO2 and MM sensor output in vivo and in vitro. We developed updated algorithms to correct observed errors and assessed the impact on MBW outcomes and FRC measurement accuracy compared with body plethysmography. The respiratory exchange ratio (RER)-based adjustment of the measured CO2 signal used in the EOPL led to an overestimated CO2 signal (range -0.1% to 1.0%). In addition, an uncorrected dependence on humidity was identified. These combined effects resulted in an overestimation of expired nitrogen concentrations (range -0.7% to 2.6%), and consequently MBW outcomes. Corrected algorithms reduced the mean (SD) cumulative expired volume by 15.8% (9.7%), FRC by 6.6% (3.0%), and lung clearance index by 9.9% (7.6%). Differences in FRC between the EOPL and body plethysmography further increased. Inadequate signal correction causes RER- and humidity-dependent expired nitrogen concentration errors and overestimation of test outcomes. Updated algorithms reduce average signal error, however, RER values far from the population average still cause measurement errors. Despite improved signal accuracy, the updated algorithm increased the difference in FRC between the EOPL and body plethysmography.NEW & NOTEWORTHY We investigated the accuracy of the molar mass (MM) and CO2 sensors of a commercial multiple-breath washout device (ndd Medizintechnik AG, Switzerland). We identified humidity and respiratory exchange ratio-dependent errors that in most measurements resulted in an overestimation of expired nitrogen concentrations, and consequently, MBW results. Functional residual capacity and lung clearance index decreased by 6.6% and 9.9%, respectively. Despite improved signal accuracy, the difference in FRC between the EOPL and body plethysmography increased.


Asunto(s)
Pruebas Respiratorias , Dióxido de Carbono , Adulto , Niño , Humanos , Pruebas Respiratorias/métodos , Reproducibilidad de los Resultados , Pulmón , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA