RESUMEN
A large proportion of stroke survivors suffer from sensory loss, negatively impacting their independence, quality of life, and neurorehabilitation prognosis. Despite the high prevalence of somatosensory impairments, our understanding of somatosensory interventions such as sensory electrical stimulation (SES) in neurorehabilitation is limited. We aimed to study the effectiveness of SES combined with a sensory discrimination task in a well-controlled virtual environment in healthy participants, setting a foundation for its potential application in stroke rehabilitation. We employed electroencephalography (EEG) to gain a better understanding of the underlying neural mechanisms and dynamics associated with sensory training and SES. We conducted a single-session experiment with 26 healthy participants who explored a set of three visually identical virtual textures-haptically rendered by a robotic device and that differed in their spatial period-while physically guided by the robot to identify the odd texture. The experiment consisted of three phases: pre-intervention, intervention, and post-intervention. Half the participants received subthreshold whole-hand SES during the intervention, while the other half received sham stimulation. We evaluated changes in task performance-assessed by the probability of correct responses-before and after intervention and between groups. We also evaluated differences in the exploration behavior, e.g., scanning speed. EEG was employed to examine the effects of the intervention on brain activity, particularly in the alpha frequency band (8-13 Hz) associated with sensory processing. We found that participants in the SES group improved their task performance after intervention and their scanning speed during and after intervention, while the sham group did not improve their task performance. However, the differences in task performance improvements between groups only approached significance. Furthermore, we found that alpha power was sensitive to the effects of SES; participants in the stimulation group exhibited enhanced brain signals associated with improved touch sensitivity likely due to the effects of SES on the central nervous system, while the increase in alpha power for the sham group was less pronounced. Our findings suggest that SES enhances texture discrimination after training and has a positive effect on sensory-related brain areas. Further research involving brain-injured patients is needed to confirm the potential benefit of our solution in neurorehabilitation.
Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Percepción del Tacto/fisiología , Rehabilitación Neurológica/métodos , Estimulación Eléctrica/métodos , Adulto Joven , Tacto/fisiología , Rehabilitación de Accidente Cerebrovascular/métodosRESUMEN
OBJECTIVE: The mechanisms of action of high-frequency stimulation (HFS) are unknown. We investigated the possible mechanism of subthreshold superexcitability of HFS on the excitability of the peripheral nerve. MATERIALS AND METHODS: The ulnar nerve was stimulated at the wrist in six healthy participants with a single (control) stimulus, and the responses were compared with the responses to a continuous train of 5 seconds at frequencies of 500 Hz, 2.5 kHz, 5 kHz, and 10 kHz. Threshold intensity for compound muscle action potential (CMAP) was defined as intensity producing a 100-µV amplitude in ten sequential trials and "subthreshold" as 10% below the CMAP threshold. HFS threshold was defined as stimulation intensity eliciting visible tetanic contraction. RESULTS: Comparing the threshold of single pulse stimulation for eliciting CMAP vs threshold for HFS response and pooling data at different frequencies (500 Hz-10 kHz) revealed a significant difference (p = 0.00015). This difference was most obvious at 10 kHz, with a mean value for threshold reduction of 42.2%. CONCLUSIONS: HFS with a stimulation intensity below the threshold for a single pulse induces axonal superexcitability if applied in a train. It can activate the peripheral nerve and produce a tetanic muscle response. Subthreshold superexcitability may allow new insights into the mechanism of HFS.
Asunto(s)
Axones , Muñeca , Humanos , Voluntarios Sanos , Frecuencia Cardíaca , Nervios PeriféricosRESUMEN
Developing motor and cognitive skills is needed to achieve expert (motor) performance or functional recovery from a neurological condition, e.g., after stroke. While extensive practice plays an essential role in the acquisition of good motor performance, it is still unknown whether certain person-specific traits may predetermine the rate of motor learning. In particular, learners' functional brain organisation might play an important role in appropriately performing motor tasks. In this paper, we aimed to study how two critical cognitive brain networks-the Attention Network (AN) and the Default Mode Network (DMN)-affect the posterior motor performance in a complex visuomotor task: virtual surfing. We hypothesised that the preactivation of the AN would affect how participants divert their attention towards external stimuli, resulting in robust motor performance. Conversely, the excessive involvement of the DMN-linked to internally diverted attention and mind-wandering-would be detrimental for posterior motor performance. We extracted seven widely accepted microstates-representing participants mind states at rest-out of the Electroencephalography (EEG) resting-state recordings of 36 healthy volunteers, prior to execution of the virtual surfing task. By correlating neural biomarkers (microstates) and motor behavioural metrics, we confirmed that the preactivation of the posterior DMN was correlated with poor posterior performance in the motor task. However, we only found a non-significant association between AN preactivation and the posterior motor performance. In this EEG study, we propose the preactivation of the posterior DMN-imaged using EEG microstates-as a neural trait related to poor posterior motor performance. Our findings suggest that the role of the executive control system is to preserve an homeostasis between the AN and the DMN. Therefore, neurofeedback-based downregulation of DMN preactivation could help optimise motor training.
RESUMEN
BACKGROUND: Current robot-aided training allows for high-intensity training but might hamper the transfer of learned skills to real daily tasks. Many of these tasks, e.g., carrying a cup of coffee, require manipulating objects with complex dynamics. Thus, the absence of somatosensory information regarding the interaction with virtual objects during robot-aided training might be limiting the potential benefits of robotic training on motor (re)learning. We hypothesize that providing somatosensory information through the haptic rendering of virtual environments might enhance motor learning and skill transfer. Furthermore, the inclusion of haptic rendering might increase the task realism, enhancing participants' agency and motivation. Providing arm weight support during training might also enhance learning by limiting participants' fatigue. METHODS: We conducted a study with 40 healthy participants to evaluate how haptic rendering and arm weight support affect motor learning and skill transfer of a dynamic task. The task consisted of inverting a virtual pendulum whose dynamics were haptically rendered on an exoskeleton robot designed for upper limb neurorehabilitation. Participants trained with or without haptic rendering and with or without weight support. Participants' task performance, movement strategy, effort, motivation, and agency were evaluated during baseline, short- and long-term retention. We also evaluated if the skills acquired during training transferred to a similar task with a shorter pendulum. RESULTS: We found that haptic rendering significantly increases participants' movement variability during training and the ability to synchronize their movements with the pendulum, which is correlated with better performance. Weight support also enhances participants' movement variability during training and reduces participants' physical effort. Importantly, we found that training with haptic rendering enhances motor learning and skill transfer, while training with weight support hampers learning compared to training without weight support. We did not observe any significant differences between training modalities regarding agency and motivation during training and retention tests. CONCLUSION: Haptic rendering is a promising tool to boost robot-aided motor learning and skill transfer to tasks with similar dynamics. However, further work is needed to find how to simultaneously provide robotic assistance and haptic rendering without hampering motor learning, especially in brain-injured patients. Trial registration https://clinicaltrials.gov/show/NCT04759976.
Asunto(s)
Dispositivo Exoesqueleto , Procedimientos Quirúrgicos Robotizados , Robótica , Brazo , Tecnología Háptica , Humanos , Destreza MotoraRESUMEN
BACKGROUND: The relearning of movements after brain injury can be optimized by providing intensive, meaningful, and motivating training using virtual reality (VR). However, most current solutions use two-dimensional (2D) screens, where patients interact via symbolic representations of their limbs (e.g., a cursor). These 2D screens lack depth cues, potentially deteriorating movement quality and increasing cognitive load. Head-mounted displays (HMDs) have great potential to provide naturalistic movement visualization by incorporating improved depth cues, reduce visuospatial transformations by rendering movements in the space where they are performed, and preserve eye-hand coordination by showing an avatar-with immersive VR (IVR)-or the user's real body-with augmented reality (AR). However, elderly populations might not find these novel technologies usable, hampering potential motor and cognitive benefits. METHODS: We compared movement quality, cognitive load, motivation, and system usability in twenty elderly participants (>59 years old) while performing a dual motor-cognitive task with different visualization technologies: IVR HMD, AR HMD, and a 2D screen. We evaluated participants' self-reported cognitive load, motivation, and usability using questionnaires. We also conducted a pilot study with five brain-injured patients comparing the visualization technologies while using an assistive device. RESULTS: Elderly participants performed straighter, shorter duration, and smoother movements when the task was visualized with the HMDs than screen. The IVR HMD led to shorter duration movements than AR. Movement onsets were shorter with IVR than AR, and shorter for both HMDs than the screen, potentially indicating facilitated reaction times due to reduced cognitive load. No differences were found in the questionnaires regarding cognitive load, motivation, or usability between technologies in elderly participants. Both HMDs proved high usability in our small sample of patients. CONCLUSIONS: HMDs are a promising technology to be incorporated into neurorehabilitation, as their more naturalistic movement visualization improves movement quality compared to conventional screens. HMDs demonstrate high usability, without decreasing participants' motivation, and might potentially lower cognitive load. Our preliminary clinical results suggest that brain-injured patients may especially benefit from more immersive technologies. However, larger patient samples are needed to draw stronger conclusions.*.
Asunto(s)
Realidad Aumentada , Realidad Virtual , Humanos , Anciano , Persona de Mediana Edad , Proyectos Piloto , Computadores , MovimientoRESUMEN
Following prolonged exposure to adaptor sounds moving in a single direction, participants may perceive stationary-probe sounds as moving in the opposite direction [direction-selective auditory motion aftereffect (aMAE)] and be less sensitive to motion of any probe sounds that are actually moving (motion-sensitive aMAE). The neural mechanisms of aMAEs, and notably whether they are due to adaptation of direction-selective motion detectors, as found in vision, is presently unknown and would provide critical insight into auditory motion processing. We measured human behavioral responses and auditory evoked potentials to probe sounds following four types of moving-adaptor sounds: leftward and rightward unidirectional, bidirectional, and stationary. Behavioral data replicated both direction-selective and motion-sensitive aMAEs. Electrical neuroimaging analyses of auditory evoked potentials to stationary probes revealed no significant difference in either global field power (GFP) or scalp topography between leftward and rightward conditions, suggesting that aMAEs are not based on adaptation of direction-selective motion detectors. By contrast, the bidirectional and stationary conditions differed significantly in the stationary-probe GFP at 200 ms poststimulus onset without concomitant topographic modulation, indicative of a difference in the response strength between statistically indistinguishable intracranial generators. The magnitude of this GFP difference was positively correlated with the magnitude of the motion-sensitive aMAE, supporting the functional relevance of the neurophysiological measures. Electrical source estimations revealed that the GFP difference followed from a modulation of activity in predominantly right hemisphere frontal-temporal-parietal brain regions previously implicated in auditory motion processing. Our collective results suggest that auditory motion processing relies on motion-sensitive, but, in contrast to vision, non-direction-selective mechanisms.
Asunto(s)
Mapeo Encefálico , Potenciales Evocados Auditivos , Localización de Sonidos , Estimulación Acústica , Adulto , Corteza Auditiva/fisiología , Femenino , Lateralidad Funcional , Humanos , Ilusiones , Masculino , Movimiento (Física) , Percepción EspacialRESUMEN
Combining immersive virtual reality (VR) using head-mounted displays (HMDs) with assisting robotic devices might be a promising procedure to enhance neurorehabilitation. However, it is still an open question how immersive virtual environments (VE) should be designed when interacting with rehabilitation robots. In conventional training, the robot is usually not visually represented in the VE, resulting in a visuo-haptic sensory conflict between what users see and feel. This study aimed to investigate how motivation, embodiment, and presence are affected by this visuo-haptic sensory conflict. Using an HMD and a rehabilitation robot, 28 healthy participants performed a path-tracing task, while the robot was either visually reproduced in the VE or not and while the robot either assisted the movements or not. Participants' performance and visual attention were measured during the tasks, and after each visibility/assistance condition, they reported their motivation, presence, and embodiment with questionnaires. We found that, independently of the assistance, the robot visibility did not affect participants' motivation, presence, embodiment, nor task performance. We only found a greater effort/importance reported when the robot was visible. The visual attention was also slightly affected by the robot's visibility. Importantly, we found that the robotic assistance hampered presence and embodiment, but improved motivation. Our results indicate no disadvantage of not reproducing robotic devices in VEs when using HMDs. However, caution must be put when developing assisting controllers, as they might hamper users' affect.
Asunto(s)
Rehabilitación Neurológica , Robótica , Realidad Virtual , Humanos , Motivación , MovimientoRESUMEN
Stroke survivors are commonly affected by somatosensory impairment, hampering their ability to interpret somatosensory information. Somatosensory information has been shown to critically support movement execution in healthy individuals and stroke survivors. Despite the detrimental effect of somatosensory impairments on performing activities of daily living, somatosensory training-in stark contrast to motor training-does not represent standard care in neurorehabilitation. Reasons for the neglected somatosensory treatment are the lack of high-quality research demonstrating the benefits of somatosensory interventions on stroke recovery, the unavailability of reliable quantitative assessments of sensorimotor deficits, and the labor-intensive nature of somatosensory training that relies on therapists guiding the hands of patients with motor impairments. To address this clinical need, we developed a virtual reality-based robotic texture discrimination task to assess and train touch sensibility. Our system incorporates the possibility to robotically guide the participants' hands during texture exploration (i.e., passive touch) and no-guided free texture exploration (i.e., active touch). We ran a 3-day experiment with thirty-six healthy participants who were asked to discriminate the odd texture among three visually identical textures -haptically rendered with the robotic device- following the method of constant stimuli. All participants trained with the passive and active conditions in randomized order on different days. We investigated the reliability of our system using the Intraclass Correlation Coefficient (ICC). We also evaluated the enhancement of participants' touch sensibility via somatosensory retraining and compared whether this enhancement differed between training with active vs. passive conditions. Our results showed that participants significantly improved their task performance after training. Moreover, we found that training effects were not significantly different between active and passive conditions, yet, passive exploration seemed to increase participants' perceived competence. The reliability of our system ranged from poor (in active condition) to moderate and good (in passive condition), probably due to the dependence of the ICC on the between-subject variability, which in a healthy population is usually small. Together, our virtual reality-based robotic haptic system may be a key asset for evaluating and retraining sensory loss with minimal supervision, especially for brain-injured patients who require guidance to move their hands.
RESUMEN
Learning a new motor task is a complex cognitive and motor process. Especially early during motor learning, cognitive functions such as attentional engagement, are essential, e.g., to discover relevant visual stimuli. Drawing participant's attention towards task-relevant stimuli-e.g., with task instructions using visual cues or explicit written information-is a common practice to support cognitive engagement during training and, hence, accelerate motor learning. However, there is little scientific evidence about how visually cued or written task instructions affect attentional brain networks during motor learning. In this experiment, we trained 36 healthy participants in a virtual motor task: surfing waves by steering a boat with a joystick. We measured the participants' motor performance and observed attentional brain networks using alpha-band electroencephalographic (EEG) activity before and after training. Participants received one of the following task instructions during training: (1) No explicit task instructions and letting participants surf freely (implicit training; IMP); (2) Task instructions provided through explicit visual cues (explicit-implicit training; E-IMP); or (3) through explicit written commands (explicit training; E). We found that providing task instructions during training (E and E-IMP) resulted in less post-training motor variability-linked to enhanced performance-compared to training without instructions (IMP). After training, participants trained with visual cues (E-IMP) enhanced the alpha-band strength over parieto-occipital and frontal brain areas at wave onset. In contrast, participants who trained with explicit commands (E) showed decreased fronto-temporal alpha activity. Thus, providing task instructions in written (E) or using visual cues (E-IMP) leads to similar motor performance improvements by enhancing activation on different attentional networks. While training with visual cues (E-IMP) may be associated with visuo-attentional processes, verbal-analytical processes may be more prominent when written explicit commands are provided (E). Together, we suggest that training parameters such as task instructions, modulate the attentional networks observed during motor practice and may support participant's cognitive engagement, compared to training without instructions.
RESUMEN
In immersive virtual reality, the own body is often visually represented by an avatar. This may induce a feeling of body ownership over the virtual limbs. Importantly, body ownership and the motor system share neural correlates. Yet, evidence on the functionality of this neuroanatomical coupling is still inconclusive. Findings from previous studies may be confounded by the congruent vs. incongruent multisensory stimulation used to modulate body ownership. This study aimed to investigate the effect of body ownership and congruency of information on motor performance in immersive virtual reality. We aimed to modulate body ownership by providing congruent vs. incongruent visuo-tactile stimulation (i.e., participants felt a brush stroking their real fingers while seeing a virtual brush stroking the same vs. different virtual fingers). To control for congruency effects, unimodal stimulation conditions (i.e., only visual or tactile) with hypothesized low body ownership were included. Fifty healthy participants performed a decision-making (pressing a button as fast as possible) and a motor task (following a defined path). Body ownership was assessed subjectively with established questionnaires and objectively with galvanic skin response (GSR) when exposed to a virtual threat. Our results suggest that congruency of information may decrease reaction times and completion time of motor tasks in immersive virtual reality. Moreover, subjective body ownership is associated with faster reaction times, whereas its benefit on motor task performance needs further investigation. Therefore, it might be beneficial to provide congruent information in immersive virtual environments, especially during the training of motor tasks, e.g., in neurorehabilitation interventions.
RESUMEN
To offer engaging neurorehabilitation training to neurologic patients, motor tasks are often visualized in virtual reality (VR). Recently introduced head-mounted displays (HMDs) allow to realistically mimic the body of the user from a first-person perspective (i.e., avatar) in a highly immersive VR environment. In this immersive environment, users may embody avatars with different body characteristics. Importantly, body characteristics impact how people perform actions. Therefore, alternating body perceptions using immersive VR may be a powerful tool to promote motor activity in neurologic patients. However, the ability of the brain to adapt motor commands based on a perceived modified reality has not yet been fully explored. To fill this gap, we "tricked the brain" using immersive VR and investigated if multisensory feedback modulating the physical properties of an embodied avatar influences motor brain networks and control. Ten healthy participants were immersed in a virtual environment using an HMD, where they saw an avatar from first-person perspective. We slowly transformed the surface of the avatar (i.e., the "skin material") from human to stone. We enforced this visual change by repetitively touching the real arm of the participant and the arm of the avatar with a (virtual) hammer, while progressively replacing the sound of the hammer against skin with stone hitting sound via loudspeaker. We applied single-pulse transcranial magnetic simulation (TMS) to evaluate changes in motor cortical excitability associated with the illusion. Further, to investigate if the "stone illusion" affected motor control, participants performed a reaching task with the human and stone avatar. Questionnaires assessed the subjectively reported strength of embodiment and illusion. Our results show that participants experienced the "stone arm illusion." Particularly, they rated their arm as heavier, colder, stiffer, and more insensitive when immersed with the stone than human avatar, without the illusion affecting their experienced feeling of body ownership. Further, the reported illusion strength was associated with enhanced motor cortical excitability and faster movement initiations, indicating that participants may have physically mirrored and compensated for the embodied body characteristics of the stone avatar. Together, immersive VR has the potential to influence motor brain networks by subtly modifying the perception of reality, opening new perspectives for the motor recovery of patients.
RESUMEN
Despite recent advances in robot-assisted training, the benefits of haptic guidance on motor (re)learning are still limited. While haptic guidance may increase task performance during training, it may also decrease participants' effort and interfere with the perception of the environment dynamics, hindering somatosensory information crucial for motor learning. Importantly, haptic guidance limits motor variability, a factor considered essential for learning. We propose that Model Predictive Controllers (MPC) might be good alternatives to haptic guidance since they minimize the assisting forces and promote motor variability during training. We conducted a study with 40 healthy participants to investigate the effectiveness of MPCs on learning a dynamic task. The task consisted of swinging a virtual pendulum to hit incoming targets with the pendulum ball. The environment was haptically rendered using a Delta robot. We designed two MPCs: the first MPC-end-effector MPC-applied the optimal assisting forces on the end-effector. A second MPC-ball MPC-applied its forces on the virtual pendulum ball to further reduce the assisting forces. The participants' performance during training and learning at short- and long-term retention tests were compared to a control group who trained without assistance, and a group that trained with conventional haptic guidance. We hypothesized that the end-effector MPC would promote motor variability and minimize the assisting forces during training, and thus, promote learning. Moreover, we hypothesized that the ball MPC would enhance the performance and motivation during training but limit the motor variability and sense of agency (i.e., the feeling of having control over their movements), and therefore, limit learning. We found that the MPCs reduce the assisting forces compared to haptic guidance. Training with the end-effector MPC increases the movement variability and does not hinder the pendulum swing variability during training, ultimately enhancing the learning of the task dynamics compared to the other groups. Finally, we observed that increases in the sense of agency seemed to be associated with learning when training with the end-effector MPC. In conclusion, training with MPCs enhances motor learning of tasks with complex dynamics and are promising strategies to improve robotic training outcomes in neurological patients.
RESUMEN
One of the main challenges in robotic neuroreha-bilitation is to understand how robots should physically interact with trainees to optimize motor leaning. There is evidence that motor exploration (i.e., the active exploration of new motor tasks) is crucial to boost motor learning. Furthermore, effectiveness of a robotic training strategy depends on several factors, such as task type and trainee's skill level. We propose that Model Predictive Controllers (MPC) can satisfy many training/trainee's needs simultaneously, while providing a safe environment without restricting trainees to a fixed trajectory. We designed two nonlinear MPCs to support training of a rich dynamic task (a pendulum task) with a delta robot. These MPCs differ from each other in terms of the application point of the intervention force: (i) to the virtual pendulum mass, and (ii) the virtual rod holding point, which corresponds to the robot end-effector. The effect of the MPCs on task performance, physical effort, motivation and sense of agency was evaluated in fourteen healthy participants. We found that the location of the applied controller force affects the task performance -i.e., the MPC that actuates on the pendulum mass significantly reduced performance errors and sense of agency during training, while the other MPC did not, probably due to low force saturation limits and slow optimization speed of the solver. Participants applied significantly more forces when training with the MPC that actuates on the pendulum holding point, probably because they reacted against the robotic assistance. Although MPCs look very promising for neurorehabilitation, further steps have to be taken to improve their technical limitations. Moreover, the effects of MPCs on motor learning should be evaluated.
Asunto(s)
Rehabilitación Neurológica/instrumentación , Robótica/educación , Robótica/instrumentación , Adulto , Femenino , Humanos , Cinética , Masculino , Encuestas y Cuestionarios , Adulto JovenRESUMEN
There is increasing interest in using virtual reality (VR) in robotic neurorehabilitation. However, the use of conventional VR displays (i.e., computer screens), implies several transformations between the real movements in 3D and their 2D virtual representations that might negatively impact the rehabilitation interventions. In this study, we compared the impact on movement quality and cognitive load of novel vs. standard visualization technologies: i) Immersive VR (IVR) head-mounted display (HMD), ii) Augmented reality (AR) HMD, and iii) Computer screen. Twenty healthy participants performed simultaneously a motor and a cognitive task. Goal-oriented reaching movements were recorded using an HTC Vive controller. The cognitive load was assessed by the accuracy on a simultaneous counting task.The movement quality improved when visualizing the movements in IVR, compared to the computer screen. These improvements were more evident for locations that required movements in several dimensions. We found a trend to higher movement quality in AR than Screen, but worse than IVR. No significant difference was observed between modalities for the cognitive load. These results provide encouraging evidence that VR interventions using HMDs might be more suited for reaching tasks in several dimensions than a computer screen. Technical limitations might still limit the beneficial effects of AR, both in movement quality and cognitive load.
Asunto(s)
Cognición/fisiología , Realidad Virtual , Adulto , Análisis de Varianza , Femenino , Humanos , Masculino , Movimiento/fisiología , Interfaz Usuario-Computador , Adulto JovenRESUMEN
Translation is a demanding process during which a message is analyzed, translated and communicated from one language to another. Despite numerous studies on translation mechanisms, the electrophysiological processes underlying translation with overt production remain largely unexplored. Here, we investigated how behavioral response patterns and spatial-temporal brain dynamics differ in a translation compared to a control within-language word-generation task. We also investigated how forward and backward translation differs on the behavioral and electrophysiological level. To address these questions, healthy late bilingual subjects performed a translation and a within-language control task while a 128-channel EEG was recorded. Behavioral data showed faster responses for translation compared to within-language word generation and faster responses for backward than forward translation. The ERP-analysis revealed stronger early ( < 200ms) preparatory and attentional processes for between than within word generation. Later (424-630ms) differences were characterized by distinct engagement of domain-general control networks, namely self-monitoring and lexical access interference. Language asymmetry effects occurred at a later stage (600ms), reflecting differences in conceptual processing characterized by a larger involvement of areas implicated in attention, arousal and awareness for forward versus backward translation.
Asunto(s)
Encéfalo/fisiología , Multilingüismo , Traducción , Adolescente , Adulto , Electroencefalografía , Potenciales Evocados , Femenino , Humanos , Masculino , Psicolingüística , Adulto JovenRESUMEN
Reading strategies vary across languages according to orthographic depth - the complexity of the grapheme in relation to phoneme conversion rules - notably at the level of eye movement patterns. We recently demonstrated that a group of early bilinguals, who learned both languages equally under the age of seven, presented a first fixation location (FFL) closer to the beginning of words when reading in German as compared with French. Since German is known to be orthographically more transparent than French, this suggested that different strategies were being engaged depending on the orthographic depth of the used language. Opaque languages induce a global reading strategy, and transparent languages force a local/serial strategy. Thus, pseudo-words were processed using a local strategy in both languages, suggesting that the link between word forms and their lexical representation may also play a role in selecting a specific strategy. In order to test whether corresponding effects appear in late bilinguals with low proficiency in their second language (L2), we present a new study in which we recorded eye movements while two groups of late German-French and French-German bilinguals read aloud isolated French and German words and pseudo-words. Since, a transparent reading strategy is local and serial, with a high number of fixations per stimuli, and the level of the bilingual participants' L2 is low, the impact of language opacity should be observed in L1. We therefore predicted a global reading strategy if the bilinguals' L1 was French (FFL close to the middle of the stimuli with fewer fixations per stimuli) and a local and serial reading strategy if it was German. Thus, the L2 of each group, as well as pseudo-words, should also require a local and serial reading strategy. Our results confirmed these hypotheses, suggesting that global word processing is only achieved by bilinguals with an opaque L1 when reading in an opaque language; the low level in the L2 gives way to a local and serial reading strategy. These findings stress the fact that reading behavior is influenced not only by the linguistic mode but also by top-down factors, such as readers' proficiency.
RESUMEN
Referred to as orthographic depth, the degree of consistency of grapheme/phoneme correspondences varies across languages from high in shallow orthographies to low in deep orthographies. The present study investigates the impact of orthographic depth on reading route by analyzing evoked potentials to words in a deep (French) and shallow (German) language presented to highly proficient bilinguals. ERP analyses to German and French words revealed significant topographic modulations 240-280 ms post-stimulus onset, indicative of distinct brain networks engaged in reading over this time window. Source estimations revealed that these effects stemmed from modulations of left insular, inferior frontal and dorsolateral regions (German>French) previously associated to phonological processing. Our results show that reading in a shallow language was associated to a stronger engagement of phonological pathways than reading in a deep language. Thus, the lexical pathways favored in word reading are reinforced by phonological networks more strongly in the shallow than deep orthography.
Asunto(s)
Encéfalo/fisiología , Lenguaje , Multilingüismo , Lectura , Adolescente , Mapeo Encefálico , Potenciales Evocados/fisiología , Femenino , Francia , Alemania , Humanos , Lingüística , Adulto JovenRESUMEN
INTRODUCTION: The orthographic depth hypothesis (Katz and Feldman, 1983) posits that different reading routes are engaged depending on the type of grapheme/phoneme correspondence of the language being read. Shallow orthographies with consistent grapheme/phoneme correspondences favor encoding via non-lexical pathways, where each grapheme is sequentially mapped to its corresponding phoneme. In contrast, deep orthographies with inconsistent grapheme/phoneme correspondences favor lexical pathways, where phonemes are retrieved from specialized memory structures. This hypothesis, however, lacks compelling empirical support. The aim of the present study was to investigate the impact of orthographic depth on reading route selection using a within-subject design. METHOD: We presented the same pseudowords (PWs) to highly proficient bilinguals and manipulated the orthographic depth of PW reading by embedding them among two separated German or French language contexts, implicating respectively, shallow or deep orthography. High density electroencephalography was recorded during the task. RESULTS: The topography of the ERPs to identical PWs differed 300-360 ms post-stimulus onset when the PWs were read in different orthographic depth context, indicating distinct brain networks engaged in reading during this time window. The brain sources underlying these topographic effects were located within left inferior frontal (German > French), parietal (French > German) and cingular areas (German > French). CONCLUSION: Reading in a shallow context favors non-lexical pathways, reflected in a stronger engagement of frontal phonological areas in the shallow versus the deep orthographic context. In contrast, reading PW in a deep orthographic context recruits less routine non-lexical pathways, reflected in a stronger engagement of visuo-attentional parietal areas in the deep versus shallow orthographic context. These collective results support a modulation of reading route by orthographic depth.