Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cerebellum ; 21(5): 821-825, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35578085

RESUMEN

In immunocompetent animals, numerous factors including the immune system of the host regulate the survival of neuro-glial precursors transplanted into the cerebellum. We transplanted human neuro-glial precursors derived in vitro from partial differentiation of IPS cells into the developing cerebellum of mice and rats before maturation of the host immune system. These approaches should facilitate the development of immune-tolerance for the transplanted cells. However, we found that human cells survived the engraftment and integrated into the host cerebellum and brain stem up to about 1 month postnatally when they were rejected in both species. On the contrary, when we transplanted the same cells in NOD-SCID mice, they survived indefinitely. Our findings are consistent with the hypothesis that the slower pace of differentiation of human neural precursors compared to that of rodents restricts the induction of immune-tolerance to human antigens expressed before completion of the maturation of the immune system. As predicted by our hypothesis, when we engrafted the human neuro-glial precursor cells either in a more mature state or mixed with extracts from adult cerebellum, we prolonged the survival of the graft.


Asunto(s)
Cerebelo , Animales , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratas , Trasplante Heterólogo
2.
Hum Mutat ; 42(1): 102-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33252173

RESUMEN

In genetic diseases, the most prevalent mechanism of pathogenicity is an altered expression of dosage-sensitive genes. Drugs that restore physiological levels of these genes should be effective in treating the associated conditions. We developed a screening strategy, based on a bicistronic dual-reporter vector, for identifying compounds that modulate protein levels, and used it in a pharmacological screening approach. To provide a proof-of-principle, we chose autosomal dominant leukodystrophy (ADLD), an ultra-rare adult-onset neurodegenerative disorder caused by lamin B1 (LMNB1) overexpression. We used a stable Chinese hamster ovary (CHO) cell line that simultaneously expresses an AcGFP reporter fused to LMNB1 and a Ds-Red normalizer. Using high-content imaging analysis, we screened a library of 717 biologically active compounds and approved drugs, and identified alvespimycin, an HSP90 inhibitor, as a positive hit. We confirmed that alvespimycin can reduce LMNB1 levels by 30%-80% in five different cell lines (fibroblasts, NIH3T3, CHO, COS-7, and rat primary glial cells). In ADLD fibroblasts, alvespimycin reduced cytoplasmic LMNB1 by about 50%. We propose this approach for effectively identifying potential drugs for treating genetic diseases associated with deletions/duplications and paving the way toward Phase II clinical trials.


Asunto(s)
Lamina Tipo B , Enfermedades Neurodegenerativas , Animales , Células CHO , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Ratones , Células 3T3 NIH , Ratas
3.
Glia ; 69(5): 1204-1215, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33381863

RESUMEN

Transplanted mesenchymal stromal/stem cells (MSC) ameliorate the clinical course of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), reducing inflammation and demyelination. These effects are mediated by instructive cross-talk between MSC and immune and neural cells. Astroglial reaction to injury is a prominent feature of both EAE and MS. Astrocytes constitute a relevant target to control disease onset and progression and, based on their potential to acquire stem cell properties in situ, to foster recovery in the post-acute phase of pathology. We have assessed how MSC impact astrocytes in vitro and ex vivo in EAE. Expression of astroglial factors implicated in EAE pathogenesis was quantified by real-time PCR in astrocytes co-cultured with MSC or isolated from EAE cerebral cortex; astrocyte morphology and expression of activation markers were analyzed by confocal microscopy. The acquisition of neural stem cell properties by astrocytes was evaluated by neurosphere assay. Our study shows that MSC prevented astrogliosis, reduced mRNA expression of inflammatory cytokines that sustain immune cell infiltration in EAE, as well as protein expression of endothelin-1, an astrocyte-derived factor that inhibits remyelination and contributes to neurodegeneration and disease progression in MS. Moreover, our data reveal that MSC promoted the acquisition of progenitor traits by astrocytes. These data indicate that MSC attenuate detrimental features of reactive astroglia and, based on the reacquisition of stem cell properties, also suggest that astrocytes may be empowered in their protective and reparative actions by MSC.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Madre Mesenquimatosas , Esclerosis Múltiple , Animales , Astrocitos , Ratones , Ratones Endogámicos C57BL , Fenotipo
4.
Glia ; 69(10): 2419-2428, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34139039

RESUMEN

Elovl5 elongates fatty acids with 18 carbon atoms and in cooperation with other enzymes guarantees the normal levels of very long-chain fatty acids, which are necessary for a proper membrane structure. Action potential conduction along myelinated axons depends on structural integrity of myelin, which is maintained by a correct amount of fatty acids and a proper interaction between fatty acids and myelin proteins. We hypothesized that in Elovl5-/- mice, the lack of elongation of Elovl5 substrates might cause alterations of myelin structure. The analysis of myelin ultrastructure showed an enlarged periodicity with reduced G-ratio across all axonal diameters. We hypothesized that the structural alteration of myelin might affect the conduction of action potentials. The sciatic nerve conduction velocity was significantly reduced without change in the amplitude of the nerve compound potential, suggesting a myelin defect without a concomitant axonal degeneration. Since Elovl5 is important in attaining normal amounts of polyunsaturated fatty acids, which are the principal component of myelin, we performed a lipidomic analysis of peripheral nerves of Elovl5-deficient mice. The results revealed an unbalance, with reduction of fatty acids longer than 18 carbon atoms relative to shorter ones. In addition, the ratio of saturated to unsaturated fatty acids was strongly increased. These findings point out the essential role of Elovl5 in the peripheral nervous system in supporting the normal structure of myelin, which is the key element for a proper conduction of electrical signals along myelinated nerves.


Asunto(s)
Axones , Vaina de Mielina , Potenciales de Acción/genética , Animales , Axones/fisiología , Elongasas de Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Ratones , Vaina de Mielina/metabolismo , Conducción Nerviosa/genética , Nervios Periféricos
5.
J Neurosci Res ; 99(9): 2228-2249, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34060113

RESUMEN

The formation of the cerebellum is highly coordinated to obtain its characteristic morphology and all cerebellar cell types. During mouse postnatal development, cerebellar progenitors with astroglial-like characteristics generate mainly astrocytes and oligodendrocytes. However, a subset of astroglial-like progenitors found in the prospective white matter (PWM) produces astroglia and interneurons. Characterizing these cerebellar astroglia-like progenitors and distinguishing their developmental fates is still elusive. Here, we reveal that astrocyte cell surface antigen-2 (ACSA-2), lately identified as ATPase, Na+/K+ transporting, beta 2 polypeptide, is expressed by glial precursors throughout postnatal cerebellar development. In contrast to common astrocyte markers, ACSA-2 appears on PWM cells but is absent on Bergmann glia (BG) precursors. In the adult cerebellum, ACSA-2 is broadly expressed extending to velate astrocytes in the granular layer, white matter astrocytes, and to a lesser extent to BG. Cell transplantation and transcriptomic analysis revealed that marker staining discriminates two postnatal progenitor pools. One subset is defined by the co-expression of ACSA-2 and GLAST and the expression of markers typical of parenchymal astrocytes. These are PWM precursors that are exclusively gliogenic. They produce predominantly white matter and granular layer astrocytes. Another subset is constituted by GLAST positive/ACSA-2 negative precursors that express neurogenic and BG-like progenitor genes. This population displays multipotency and gives rise to interneurons besides all glial types, including BG. In conclusion, this work reports about ACSA-2, a marker that in combination with GLAST enables for the discrimination and isolation of multipotent and glia-committed progenitors, which generate different types of cerebellar astrocytes.


Asunto(s)
Antígenos de Superficie/análisis , Cerebelo/química , Cerebelo/citología , Transportador 1 de Aminoácidos Excitadores/análisis , Células Madre Multipotentes/química , Neuroglía/química , Animales , Animales Recién Nacidos , Femenino , Separación Inmunomagnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/clasificación , Análisis de Secuencia de ARN/métodos
6.
PLoS Biol ; 16(9): e2005513, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30260948

RESUMEN

The morphological, molecular, and functional heterogeneity of astrocytes is under intense scrutiny, but how this diversity is ontogenetically achieved remains largely unknown. Here, by quantitative in vivo clonal analyses and proliferation studies, we demonstrate that the major cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program comprising (i) a time-dependent decline in both clone size and progenitor multipotency, associated with clone allocation first to the hemispheres and then to the vermis(ii) distinctive clonal relationships among astrocyte types, revealing diverse lineage potentials of embryonic and postnatal progenitors; and (iii) stereotyped clone architectures and recurrent modularities that correlate to layer-specific dynamics of postnatal proliferation/differentiation. In silico simulations indicate that the sole presence of a unique multipotent progenitor at the source of the whole astrogliogenic program is unlikely and rather suggest the involvement of additional committed components.


Asunto(s)
Astrocitos/citología , Cerebelo/citología , Animales , Animales Recién Nacidos , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Tamaño de la Célula , Cerebelo/embriología , Células Clonales , Simulación por Computador , Femenino , Humanos , Ratones Endogámicos C57BL , Modelos Biológicos , Sustancia Blanca/citología
7.
Glia ; 68(10): 2001-2014, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32163190

RESUMEN

In the last decade, microRNAs have been increasingly recognized as key modulators of glial development. Recently, we identified miR-125a-3p as a new player in oligodendrocyte physiology, regulating in vitro differentiation of oligodendrocyte precursor cells (OPCs). Here, we show that miR-125a-3p is upregulated in active lesions of multiple sclerosis (MS) patients and in OPCs isolated from the spinal cord of chronic experimental autoimmune encephalomyelitis (EAE) mice, but not in those isolated from the spontaneously remyelinating corpus callosum of lysolecithin-treated mice. To test whether a sustained expression of miR-125a-3p in OPCs contribute to defective remyelination, we modulated miR-125a-3p expression in vivo and ex vivo after lysolecithin-induced demyelination. We found that lentiviral over-expression of miR-125a-3p impaired OPC maturation, whereas its downregulation accelerated remyelination. Transcriptome analysis and luciferase reporter assay revealed that these effects are partly mediated by the direct interaction of miR-125a-3p with Slc8a3, a sodium-calcium membrane transporter, and identified novel candidate targets, such as Gas7, that we demonstrated necessary to correctly address oligodendrocytes to terminal maturation. These findings show that miR-125a-3p upregulation negatively affects OPC maturation in vivo, suggest its role in the pathogenesis of demyelinating diseases and unveil new targets for future promyelinating protective interventions.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Silenciador del Gen/fisiología , MicroARNs/biosíntesis , Vaina de Mielina/metabolismo , Remielinización/fisiología , Sustancia Blanca/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Vaina de Mielina/genética , Vaina de Mielina/patología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Sustancia Blanca/patología
8.
Brain ; 142(7): 1905-1920, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31143934

RESUMEN

Allele-specific silencing by RNA interference (ASP-siRNA) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. This approach has been effectively used to target autosomal dominant mutations and single nucleotide polymorphisms linked with aberrantly expanded trinucleotide repeats. Here, we propose ASP-siRNA as a preferable choice to target duplicated disease genes, avoiding potentially harmful excessive downregulation. As a proof-of-concept, we studied autosomal dominant adult-onset demyelinating leukodystrophy (ADLD) due to lamin B1 (LMNB1) duplication, a hereditary, progressive and fatal disorder affecting myelin in the CNS. Using a reporter system, we screened the most efficient ASP-siRNAs preferentially targeting one of the alleles at rs1051644 (average minor allele frequency: 0.45) located in the 3' untranslated region of the gene. We identified four siRNAs with a high efficacy and allele-specificity, which were tested in ADLD patient-derived fibroblasts. Three of the small interfering RNAs were highly selective for the target allele and restored both LMNB1 mRNA and protein levels close to control levels. Furthermore, small interfering RNA treatment abrogates the ADLD-specific phenotypes in fibroblasts and in two disease-relevant cellular models: murine oligodendrocytes overexpressing human LMNB1, and neurons directly reprogrammed from patients' fibroblasts. In conclusion, we demonstrated that ASP-silencing by RNA interference is a suitable and promising therapeutic option for ADLD. Moreover, our results have a broad translational value extending to several pathological conditions linked to gene-gain in copy number variations.


Asunto(s)
Alelos , Duplicación de Gen/efectos de los fármacos , Silenciador del Gen , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Lamina Tipo B/metabolismo , Enfermedad de Pelizaeus-Merzbacher/tratamiento farmacológico , ARN Interferente Pequeño/uso terapéutico , Animales , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/efectos de los fármacos , Vectores Genéticos , Humanos , Lentivirus , Neuronas/metabolismo , Ratas
9.
Acta Neuropathol ; 138(6): 987-1012, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31363836

RESUMEN

Microglia are highly plastic immune cells which exist in a continuum of activation states. By shaping the function of oligodendrocyte precursor cells (OPCs), the brain cells which differentiate to myelin-forming cells, microglia participate in both myelin injury and remyelination during multiple sclerosis. However, the mode(s) of action of microglia in supporting or inhibiting myelin repair is still largely unclear. Here, we analysed the effects of extracellular vesicles (EVs) produced in vitro by either pro-inflammatory or pro-regenerative microglia on OPCs at demyelinated lesions caused by lysolecithin injection in the mouse corpus callosum. Immunolabelling for myelin proteins and electron microscopy showed that EVs released by pro-inflammatory microglia blocked remyelination, whereas EVs produced by microglia co-cultured with immunosuppressive mesenchymal stem cells promoted OPC recruitment and myelin repair. The molecular mechanisms responsible for the harmful and beneficial EV actions were dissected in primary OPC cultures. By exposing OPCs, cultured either alone or with astrocytes, to inflammatory EVs, we observed a blockade of OPC maturation only in the presence of astrocytes, implicating these cells in remyelination failure. Biochemical fractionation revealed that astrocytes may be converted into harmful cells by the inflammatory EV cargo, as indicated by immunohistochemical and qPCR analyses, whereas surface lipid components of EVs promote OPC migration and/or differentiation, linking EV lipids to myelin repair. Although the mechanisms through which the lipid species enhance OPC maturation still remain to be fully defined, we provide the first demonstration that vesicular sphingosine 1 phosphate stimulates OPC migration, the first fundamental step in myelin repair. From this study, microglial EVs emerge as multimodal and multitarget signalling mediators able to influence both OPCs and astrocytes around myelin lesions, which may be exploited to develop novel approaches for myelin repair not only in multiple sclerosis, but also in neurological and neuropsychiatric diseases characterized by demyelination.


Asunto(s)
Astrocitos/fisiología , Enfermedades Desmielinizantes/fisiopatología , Vesículas Extracelulares/fisiología , Microglía/fisiología , Vaina de Mielina/fisiología , Remielinización/fisiología , Animales , Astrocitos/patología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Técnicas de Cocultivo , Cuerpo Calloso/patología , Cuerpo Calloso/fisiopatología , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/patología , Inflamación/patología , Inflamación/fisiopatología , Lisofosfatidilcolinas , Masculino , Células Madre Mesenquimatosas/fisiología , Ratones Endogámicos C57BL , Microglía/patología , Vaina de Mielina/patología , Neuroprotección/fisiología , Células Precursoras de Oligodendrocitos/patología , Células Precursoras de Oligodendrocitos/fisiología , Ratas Sprague-Dawley
10.
Cerebellum ; 18(3): 575-592, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30607797

RESUMEN

Restoration of damaged central nervous system structures, functional recovery, and prevention of neuronal loss during neurodegenerative diseases are major objectives in cerebellar research. The highly organized anatomical structure of the cerebellum with numerous inputs/outputs, the complexity of cerebellar functions, and the large spectrum of cerebellar ataxias render therapies of cerebellar disorders highly challenging. There are currently several therapeutic approaches including motor rehabilitation, neuroprotective drugs, non-invasive cerebellar stimulation, molecularly based therapy targeting pathogenesis of the disease, and neurotransplantation. We discuss the goals and possible beneficial mechanisms of transplantation therapy for cerebellar damage and its limitations and factors determining outcome.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedades Cerebelosas/terapia , Animales
11.
Brain ; 141(7): 2055-2065, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29722793

RESUMEN

Human genetic studies are rapidly identifying variants that increase risk for neurodevelopmental disorders. However, it remains unclear how specific mutations impact brain function and contribute to neuropsychiatric risk. Chromosome 16p11.2 deletion is one of the most common copy number variations in autism and related neurodevelopmental disorders. Using resting state functional MRI data from the Simons Variation in Individuals Project (VIP) database, we show that 16p11.2 deletion carriers exhibit impaired prefrontal connectivity, resulting in weaker long-range functional coupling with temporal-parietal regions. These functional changes are associated with socio-cognitive impairments. We also document that a mouse with the same genetic deficiency exhibits similarly diminished prefrontal connectivity, together with thalamo-prefrontal miswiring and reduced long-range functional synchronization. These results reveal a mechanistic link between specific genetic risk for neurodevelopmental disorders and long-range functional coupling, and suggest that deletion in 16p11.2 may lead to impaired socio-cognitive function via dysregulation of prefrontal connectivity.


Asunto(s)
Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Discapacidad Intelectual/genética , Red Nerviosa/fisiología , Adolescente , Animales , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Niño , Deleción Cromosómica , Trastornos de los Cromosomas/fisiopatología , Cromosomas Humanos Par 16/genética , Cognición/fisiología , Disfunción Cognitiva/complicaciones , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Humanos , Discapacidad Intelectual/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiopatología
12.
Glia ; 66(9): 1929-1946, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29732603

RESUMEN

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Asunto(s)
Ataxia/metabolismo , Vermis Cerebeloso/crecimiento & desarrollo , Vermis Cerebeloso/metabolismo , Neuroglía/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Animales Recién Nacidos , Ataxia/patología , Células Cultivadas , Vermis Cerebeloso/patología , Regulación de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones Transgénicos , Mutación , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuroglía/patología , Factores de Transcripción Otx/metabolismo , Factores de Transcripción SOXB1/genética , Transmisión Sináptica/fisiología
13.
Development ; 142(5): 840-5, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25655705

RESUMEN

In the adult brain, subsets of astrocytic cells residing in well-defined neurogenic niches constitutively generate neurons throughout life. Brain lesions can stimulate neurogenesis in otherwise non-neurogenic regions, but whether local astrocytic cells generate neurons in these conditions is unresolved. Here, through genetic and viral lineage tracing in mice, we demonstrate that striatal astrocytes become neurogenic following an acute excitotoxic lesion. Similar to astrocytes of adult germinal niches, these activated parenchymal progenitors express nestin and generate neurons through the formation of transit amplifying progenitors. These results shed new light on the neurogenic potential of the adult brain parenchyma.


Asunto(s)
Astrocitos/citología , Enfermedad de Huntington/metabolismo , Animales , Astrocitos/metabolismo , Proteínas de Dominio Doblecortina , Técnica del Anticuerpo Fluorescente , Antígeno Ki-67/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuropéptidos/metabolismo
14.
Acta Neuropathol ; 135(4): 529-550, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29302779

RESUMEN

Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.


Asunto(s)
Vesículas Extracelulares/inmunología , Inflamación/metabolismo , MicroARNs/metabolismo , Neuroglía/inmunología , Neuronas/inmunología , Sinapsis/inmunología , Animales , Células Cultivadas , Líquido Cefalorraquídeo/metabolismo , Técnicas de Cocultivo , Vesículas Extracelulares/patología , Femenino , Hipocampo/inmunología , Hipocampo/patología , Humanos , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Neuroglía/patología , Plasticidad Neuronal/fisiología , Neuronas/patología , Cultivo Primario de Células , Ratas Sprague-Dawley , Sinapsis/patología
15.
Nanomedicine ; 14(7): 2341-2350, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29079529

RESUMEN

The detection of neuroinflammatory processes using innovative and non-invasive imaging techniques is of great help to deeply investigate the onset and progression of neurodegenerative diseases. Since Vascular Cell Adhesion Molecule (VCAM-1) is over expressed at the blood brain barrier in the event of neuroinflammation, the goal of this work was the testing of MRI detectable micelles targeted towards VCAM-1 to visualize inflamed regions in a mouse model of acute neuroinflammation. The developed probe allowed for the early detection of the disease, with higher T1 signal enhancement and more precise localization in comparison to untargeted micelles or to the clinically approved contrast agent MultiHance. Moreover, the relatively long blood half-life of the nanosystem (ca. 6.3 h) guaranteed a good accumulation in the inflamed regions, paving the way to future diagnostic/theranostic applications, implying the loading of neuroprotective or even anti-cancer drugs inside the core of the micelles.


Asunto(s)
Inflamación/patología , Imagen por Resonancia Magnética/métodos , Imanes/química , Micelas , Neuronas/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Medios de Contraste/metabolismo , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroimagen , Neuronas/metabolismo
16.
Neurobiol Dis ; 102: 49-59, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28237314

RESUMEN

Treatment options for degenerative cerebellar ataxias are currently very limited. A large fraction of such disorders is represented by hereditary cerebellar ataxias, whose familiar transmission facilitates an early diagnosis and may possibly allow to start preventive treatments before the onset of the neurodegeneration and appearance of first symptoms. In spite of the heterogeneous aetiology, histological alterations of ataxias often include the primary degeneration of the cerebellar cortex caused by Purkinje cells (PCs) loss. Thus, approaches aimed at replacing or preserving PCs could represent promising ways of disease management. In the present study, we compared the efficacy of two different preventive strategies, namely cell replacement and motor training. We used tambaleante (tbl) mice as a model for progressive ataxia caused by selective loss of PCs and evaluated the effectiveness of the preventive transplantation of healthy PCs into early postnatal tbl cerebella, in terms of PC replacement and functional preservation. On the other hand, we investigated the effects of motor training on PC survival, cerebellar circuitry and their behavioral correlates. Our results demonstrate that, despite a good survival rate and integration of grafted PCs, the adopted grafting protocol could not alleviate the ataxic symptoms in tbl mice. Conversely, preventive motor training increases PCs survival with a moderate positive impact on the motor phenotype.


Asunto(s)
Autofagia , Ataxia Cerebelosa/patología , Ataxia Cerebelosa/prevención & control , Terapia por Ejercicio , Células-Madre Neurales/trasplante , Células de Purkinje/trasplante , Animales , Autofagia/fisiología , Supervivencia Celular , Ataxia Cerebelosa/fisiopatología , Cerebelo/patología , Cerebelo/fisiopatología , Cerebelo/cirugía , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones Transgénicos , Actividad Motora/fisiología , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Neuroprotección , Células de Purkinje/patología , Células de Purkinje/fisiología , Sinapsis/patología , Sinapsis/fisiología
17.
Cell Mol Life Sci ; 73(2): 291-303, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26499980

RESUMEN

The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/patología , Proteínas Hedgehog/análisis , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Meduloblastoma/metabolismo , Meduloblastoma/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología
18.
J Neurosci ; 35(19): 7388-402, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972168

RESUMEN

Cerebellar GABAergic interneurons in mouse comprise multiple subsets of morphologically and neurochemically distinct phenotypes located at strategic nodes of cerebellar local circuits. These cells are produced by common progenitors deriving from the ventricular epithelium during embryogenesis and from the prospective white matter (PWM) during postnatal development. However, it is not clear whether these progenitors are also shared by other cerebellar lineages and whether germinative sites different from the PWM originate inhibitory interneurons. Indeed, the postnatal cerebellum hosts another germinal site along the Purkinje cell layer (PCL), in which Bergmann glia are generated up to first the postnatal weeks, which was proposed to be neurogenic. Both PCL and PWM comprise precursors displaying traits of juvenile astroglia and neural stem cell markers. First, we examine the proliferative and fate potential of these niches, showing that different proliferative dynamics regulate progenitor amplification at these sites. In addition, PCL and PWM differ in the generated progeny. GABAergic interneurons are produced exclusively by PWM astroglial-like progenitors, whereas PCL precursors produce only astrocytes. Finally, through in vitro, ex vivo, and in vivo clonal analyses we provide evidence that the postnatal PWM hosts a bipotent progenitor that gives rise to both interneurons and white matter astrocytes.


Asunto(s)
Proliferación Celular/fisiología , Cerebelo/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/fisiología , Neuroglía/fisiología , Células Madre/fisiología , Actinas/genética , Actinas/metabolismo , Animales , Animales Recién Nacidos , Antígenos CD2/genética , Antígenos CD2/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Embrión de Mamíferos , Antagonistas de Estrógenos/farmacología , Transportador 1 de Aminoácidos Excitadores/genética , Femenino , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamoxifeno/farmacología , Sustancia Blanca/citología , Sustancia Blanca/metabolismo
19.
Cerebellum ; 15(6): 789-828, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26439486

RESUMEN

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Asunto(s)
Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Animales , Cerebelo/citología , Cerebelo/fisiopatología , Consenso , Humanos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
20.
Glia ; 63(2): 271-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25213035

RESUMEN

Oligodendrocyte progenitor cells (OPCs) persist in the adult central nervous system and guarantee oligodendrocyte turnover throughout life. It remains obscure how OPCs avoid exhaustion during adulthood. Similar to stem cells, OPCs could self-maintain by undergoing asymmetric divisions generating a mixed progeny either keeping a progenitor phenotype or proceeding to differentiation. To address this issue, we examined the distribution of stage-specific markers in sister OPCs during mitosis and later after cell birth, and assessed its correlation with distinct short-term fates. In both the adult and juvenile cerebral cortex a fraction of dividing OPCs gives rise to sister cells with diverse immunophenotypic profiles and short-term behaviors. Such heterogeneity appears as cells exit cytokinesis, but does not derive from the asymmetric segregation of molecules such as NG2 or PDGFRa expressed in the mother cell. Rather, rapid downregulation of OPC markers and upregulation of molecules associated with lineage progression contributes to generate early sister OPC asymmetry. Analyses during aging and upon exposure to physiological (i.e., increased motor activity) and pathological (i.e., trauma or demyelination) stimuli showed that both intrinsic and environmental factors contribute to determine the fraction of symmetric and asymmetric OPC pairs and the phenotype of the OPC progeny as soon as cells exit mitosis.


Asunto(s)
Envejecimiento , Mitosis/fisiología , Oligodendroglía/fisiología , Células Madre/fisiología , Análisis de Varianza , Animales , Antígenos/genética , Antígenos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bromodesoxiuridina , Ciclo Celular/fisiología , Diferenciación Celular , Células Cultivadas , Sistema Nervioso Central/citología , Regulación de la Expresión Génica/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA