RESUMEN
Modern synchrotron radiation sources and free electron laser made X-ray absorption spectroscopy (XAS) an analytical tool for the structural analysis of materials under in situ or operando conditions. Fourier approach applied to the extended region of the XAS spectrum (EXAFS) allows the estimation of the number of structural and non-structural parameters which can be refined through a fitting procedure. The near edge region of the XAS spectrum (XANES) is also sensitive to the coordinates of all the atoms in the local cluster around the absorbing atom. However, in contrast to EXAFS, the existing approaches of quantitative analysis provide no estimation for the number of structural parameters that can be evaluated for a given XANES spectrum. This problem exists both for the classical gradient descent approaches and for modern machine learning methods based on neural networks. We developed a new approach for rational fit based on principal component descriptors of the spectrum. In this work the principal component analysis (PCA) is applied to a dataset of theoretical spectra calculated a priori on a grid of variable structural parameters of a molecule or cluster. Each principal component of the dataset is related then to a combined variation of several structural parameters, similar to the vibrational normal mode. Orthogonal principal components determine orthogonal deformations that can be extracted independently upon the analysis of the XANES spectrum. Applying statistical criteria, the PCA-based fit of the XANES determines the accessible structural information in the spectrum for a given system.
RESUMEN
A novel approach for the analysis of extended X-ray absorption fine structure (EXAFS) spectra is developed exploiting an inverse machine learning-based algorithm. Through this approach, it is possible to explore and account for, in a precise way, the nonlinear geometry dependence of the photoelectron backscattering phases and amplitudes of single and multiple scattering paths. In addition, the determined parameters are directly related to the 3D atomic structure, without the need to use complex parametrization as in the classical fitting approach. The applicability of the approach, its potential and the advantages over the classical fit were demonstrated by fitting the EXAFS data of two molecular systems, namely, the KAu (CN)2 and the [RuCl2(CO)3]2 complexes.
RESUMEN
Functionalization of metal-organic frameworks with metal nanoparticles (NPs) is a promising way for producing advanced materials for catalytic applications. We present the synthesis and in situ characterization of palladium NPs encapsulated inside a functionalized UiO-67 metal-organic framework. The initial structure was synthesized with 10% of PdCl2bpydc moieties with grafted Pd ions replacing standard 4,4'-biphenyldicarboxylate linkers. This material exhibits the same high crystallinity and thermal stability of standard UiO-67. Formation of palladium NPs was initiated by sample activation in hydrogen and monitored by in situ X-ray powder diffraction and X-ray absorption spectroscopy (XAS). The reduction of PdII ions to Pd0 occurs above 200 °C in 6% H2/He flow. The formed palladium NPs have an average size of 2.1 nm as limited by the cavities of UiO-67 structure. The resulting material showed high activity towards ethylene hydrogenation. Under reaction conditions, palladium was found to form a carbide structure indicated by operando XAS, while formation of ethane was monitored by mass spectroscopy and infra-red spectroscopy.
RESUMEN
The exceptional thermal and chemical stability of the UiO-66, -67 and -68 classes of isostructural MOFs [J. Am. Chem. Soc., 2008, 130, 13850] makes them ideal materials for functionalization purposes aimed at introducing active centres for potential application in heterogeneous catalysis. We previously demonstrated that a small fraction (up to 10%) of the linkers in the UiO-67 MOF can be replaced by bipyridine-dicarboxylate (bpydc) moieties exhibiting metal-chelating ability and enabling the grafting of Pt(ii) and Pt(iv) ions in the MOF framework [Chem. Mater., 2015, 27, 1042] upon interaction with PtCl2 or PtCl4 precursors. Herein we extend this functionalization approach in two directions. First, we show that by controlling the activation of the UiO-67-Pt we can move from a material hosting isolated Pt(ii) sites anchored to the MOF framework with Pt(ii) exhibiting two coordination vacancies (potentially interesting for C-H bond activation) to the formation of very small Pt nanoparticles hosted inside the MOF cavities (potentially interesting for hydrogenation reactions). The second direction consists of the extension of the approach to the insertion of Cu(ii), obtained via interaction with CuCl2, and exhibiting interesting redox properties. All materials have been characterized by in situ X-ray absorption spectroscopy at the Pt L3- and Cu K-edges.
RESUMEN
An X-ray absorption spectroscopy study of the UiO-67 Pt functionalized metal organic frameworks (MOFs) demonstrates that under appropriate conditions, at least two types of catalytically active sites can be formed in the cavities of the MOF: isolated Pt-complexes and Pt nanoparticles (Pt-NPs). Both pre-made linker synthesis (PMLS) and post-synthesis functionalization (PSF) methods were adopted. XAS was used to monitor the temperature-dependent behaviour of UiO-67-Pt while heating from RT to 623 K, in different gas feeds (pure He, 3% H2/He and 10% H2/He). We collected static in situ Pt LIII XANES and EXAFS spectra at room temperature (RT) before and after the thermal treatment, as well as spectra acquired under operando conditions upon heating. Under 10% H2/He thermal treatment, we unambiguously detected Pt-NP formation which has been followed by a parametric EXAFS analysis of the data collected during temperature programmed H2-reduction (TPR), using the Einstein model to predict the temperature dependence of the Debye-Waller factors. Conversely, in pure He flow, the only significant change observed during TPR is the progressive decrease of the Pt-Cl single scattering contribution, leading to the conclusion that the Pt grafted to the bpydc-linkers remains naked. Advanced EXAFS/TEM analysis allowed us to quantify the fraction of Pt in the form of Pt-NPs, values that have been quantitatively confirmed by linear combination analysis of the XANES spectra. In situ XANES/EXAFS study was supported by ex situ XRPD and BET analyses, confirming the framework stability and testifying a loss of the internal volume after TPR due to the formation of Pt-NPs insides the MOF pores, more relevant in the sample where smaller Pt-NPs were formed.
RESUMEN
This work establishes structure-property relationships in Ru-based catalytic systems for selective hydrodeoxygenation of ketones to alkenes by combining extensive catalytic testing, in situ X-ray absorption spectroscopy (XAS) under high pressures and temperatures and ex situ XAS structural characterization supported by density functional theory (DFT) calculations. Catalytic tests revealed the difference in hydrogenation selectivity for ketones (exemplified by acetone) or alkenes (exemplified by propene) upon changing the reaction conditions, more specifically in the presence of CO during a pretreatment step. XAS data demonstrated the evolution of the local ruthenium structure with different amounts of Cl/Br and CO ligands. In addition, in the absence of CO, the catalyst was reduced to Ru0, and this was associated with a significant decrease of the selectivity for ketone hydrogenation. For the Ru-bromide carbonyl complex, selectivity towards acetone hydrogenation over propene hydrogenation was explained on the basis of different relative energies of the first intermediate states of each reaction. These results give a complete understanding of the evolution of the Ru species, used for the catalytic valorization of biobased polyols to olefins in ionic liquids, identifying the undesired deactivation routes as well as possibilities for reactivation.