Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(3): 580-589, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38123726

RESUMEN

Converging theoretical frameworks suggest a role and a therapeutic potential for spinal interoceptive pathways in major depressive disorder (MDD). Here, we aimed to evaluate the antidepressant effects and tolerability of transcutaneous spinal direct current stimulation (tsDCS) in MDD. This was a double-blind, randomized, sham-controlled, parallel group, pilot clinical trial in unmedicated adults with moderate MDD. Twenty participants were randomly allocated (1:1 ratio) to receive "active" 2.5 mA or "sham" anodal tsDCS sessions with a thoracic (anode; T10)/right shoulder (cathode) electrode montage 3 times/week for 8 weeks. Change in depression severity (MADRS) scores (prespecified primary outcome) and secondary clinical outcomes were analyzed with ANOVA models. An E-Field model was generated using the active tsDCS parameters. Compared to sham (n = 9), the active tsDCS group (n = 10) showed a greater baseline to endpoint decrease in MADRS score with a large effect size (-14.6 ± 2.5 vs. -21.7 ± 2.3, p = 0.040, d = 0.86). Additionally, compared to sham, active tsDCS induced a greater decrease in MADRS "reported sadness" item (-1.8 ± 0.4 vs. -3.2 ± 0.4, p = 0.012), and a greater cumulative decrease in pre/post tsDCS session diastolic blood pressure change from baseline to endpoint (group difference: 7.9 ± 3.7 mmHg, p = 0.039). Statistical trends in the same direction were observed for MADRS "pessimistic thoughts" item and week-8 CGI-I scores. No group differences were observed in adverse events (AEs) and no serious AEs occurred. The current flow simulation showed electric field at strength within the neuromodulation range (max. ~0.45 V/m) reaching the thoracic spinal gray matter. The results from this pilot study suggest that tsDCS is feasible, well-tolerated, and shows therapeutic potential in MDD. This work also provides the initial framework for the cautious exploration of non-invasive spinal cord neuromodulation in the context of mental health research and therapeutics. The underlying mechanisms warrant further investigation. Clinicaltrials.gov registration: NCT03433339 URL: https://clinicaltrials.gov/ct2/show/NCT03433339 .


Asunto(s)
Trastorno Depresivo Mayor , Estimulación de la Médula Espinal , Humanos , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/fisiopatología , Masculino , Femenino , Adulto , Proyectos Piloto , Método Doble Ciego , Estimulación de la Médula Espinal/métodos , Persona de Mediana Edad , Resultado del Tratamiento
2.
Glia ; 71(2): 155-167, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35971989

RESUMEN

Microglia is considered the central nervous system (CNS) resident macrophages that establish an innate immune response against pathogens and toxins. However, the recent studies have shown that microglial gene and protein expression follows a circadian pattern; several immune activation markers and clock genes are expressed rhythmically without the need for an immune stimulus. Furthermore, microglia responds to an immune challenge with different magnitudes depending on the time of the day. This review examines the circadian control of microglia function and the possible physiological implications. For example, we discuss that synaptic prune is performed in the cortex at a certain moment of the day. We also consider the implications of daily microglial function for maintaining biological rhythms like general activity, body temperature, and food intake. We conclude that the developmental stage, brain region, and pathological state are not the only factors to consider for the evaluation of microglial functions; instead, emerging evidence indicates that circadian time as an essential aspect for a better understanding of the role of microglia in CNS physiology.


Asunto(s)
Microglía , Fenómenos Fisiológicos , Microglía/fisiología , Macrófagos , Sistema Nervioso Central , Encéfalo , Inmunidad Innata
3.
BMC Biol ; 20(1): 58, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236346

RESUMEN

BACKGROUND: Many epidemiological studies revealed that shift work is associated with an increased risk of a number of pathologies, including cardiovascular diseases. An experimental model of shift work in rats has additionally been shown to recapitulate aspects of metabolic disorders observed in human shift workers, including increased fat content and impaired glucose tolerance, and used to demonstrate that restricting food consumption outside working hours prevents shift work-associated obesity and metabolic disturbance. However, the way distinct shift work parameters, such as type of work, quantity, and duration, affect cardiovascular function and the underlying mechanisms, remains poorly understood. Here, we used the rat as a model to characterize the effects of shift work in the heart and determine whether they can be modulated by restricting food intake during the normal active phase. RESULTS: We show that experimental shift work reprograms the heart cycling transcriptome independently of food consumption. While phases of rhythmic gene expression are distributed across the 24-h day in control rats, they are clustered towards discrete times in shift workers. Additionally, preventing food intake during shift work affects the expression level of hundreds of genes in the heart, including genes encoding components of the extracellular matrix and inflammatory markers found in transcriptional signatures associated with pressure overload and cardiac hypertrophy. Consistent with this, the heart of shift worker rats not eating during work hours, but having access to food outside of shift work, exhibits increased collagen 1 deposition and displays increased infiltration by immune cells. While maintaining food access during shift work has less effects on gene expression, genes found in transcriptional signatures of cardiac hypertrophy remain affected, and the heart of shift worker rats exhibits fibrosis without inflammation. CONCLUSIONS: Together, our findings unraveled differential effects of food consumption on remodeled transcriptional profiles of the heart in shift worker rats. They also provide insights into how shift work affects cardiac function and suggest that some interventions aiming at mitigating metabolic disorders in shift workers may have adverse effects on cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Horario de Trabajo por Turnos , Animales , Cardiomegalia , Ritmo Circadiano , Ingestión de Alimentos , Fibrosis , Inflamación/genética , Ratas , Horario de Trabajo por Turnos/efectos adversos , Transcriptoma
4.
Diabetologia ; 62(11): 2088-2093, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31327049

RESUMEN

AIMS/HYPOTHESIS: The central pacemaker of the mammalian biological timing system is located within the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. Together with the peripheral clocks, this central brain clock ensures a timely, up-to-date and proper behaviour for an individual throughout the day-night cycle. A mismatch between the central and peripheral clocks results in a disturbance of daily rhythms in physiology and behaviour. It is known that the number of rhythmically expressed genes is reduced in peripheral tissue of individuals with type 2 diabetes mellitus. However, it is not known whether the central SCN clock is also affected in the pathogenesis of type 2 diabetes. In the current study, we compared the profiles of the SCN neurons and glial cells between type 2 diabetic and control individuals. METHODS: We collected post-mortem hypothalamic tissues from 28 type 2 diabetic individuals and 12 non-diabetic control individuals. We performed immunohistochemical analysis for three SCN neuropeptides, arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP) and neurotensin (NT), and for two proteins expressed in glial cells, ionised calcium-binding adapter molecule 1 (IBA1, a marker of microglia) and glial fibrillary acidic protein (GFAP, a marker of astroglial cells). RESULTS: The numbers of AVP immunoreactive (AVP-ir) and VIP-ir neurons and GFAP-ir astroglial cells in the SCN of type 2 diabetic individuals were significantly decreased compared with the numbers in the SCN of the control individuals. In addition, the relative intensity of AVP immunoreactivity was reduced in the individuals with type 2 diabetes. The number of NT-ir neurons and IBA1-ir microglial cells in the SCN was similar in the two groups. CONCLUSIONS/INTERPRETATION: Our data show that type 2 diabetes differentially affects the numbers of AVP- and VIP-expressing neurons and GFAP-ir astroglial cells in the SCN, each of which could affect the daily rhythmicity of the SCN biological clock machinery. Therefore, for effectively treating type 2 diabetes, lifestyle changes and/or medication to normalise central biological clock functioning might be helpful.


Asunto(s)
Arginina Vasopresina/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Neuroglía/metabolismo , Neuronas/metabolismo , Núcleo Supraquiasmático/citología , Ritmo Circadiano , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Estilo de Vida , Microglía/citología , Microglía/metabolismo , Neuropéptidos/metabolismo , Neurofisinas , Precursores de Proteínas , Péptido Intestinal Vasoactivo/metabolismo , Vasopresinas
5.
Physiology (Bethesda) ; 31(3): 170-81, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27053731

RESUMEN

Circadian rhythms are generated by the autonomous circadian clock, the suprachiasmatic nucleus (SCN), and clock genes that are present in all tissues. The SCN times these peripheral clocks, as well as behavioral and physiological processes. Recent studies show that frequent violations of conditions set by our biological clock, such as shift work, jet lag, sleep deprivation, or simply eating at the wrong time of the day, may have deleterious effects on health. This infringement, also known as circadian desynchronization, is associated with chronic diseases like diabetes, hypertension, cancer, and psychiatric disorders. In this review, we will evaluate evidence that these diseases stem from the need of the SCN for peripheral feedback to fine-tune its output and adjust physiological processes to the requirements of the moment. This feedback can vary from neuronal or hormonal signals from the liver to changes in blood pressure. Desynchronization renders the circadian network dysfunctional, resulting in a breakdown of many functions driven by the SCN, disrupting core clock rhythms in the periphery and disorganizing cellular processes that are normally driven by the synchrony between behavior and peripheral signals with neuronal and humoral output of the hypothalamus. Consequently, we propose that the loss of synchrony between the different elements of this circadian network as may occur during shiftwork and jet lag is the reason for the occurrence of health problems.


Asunto(s)
Conducta/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Núcleo Supraquiasmático/fisiología , Animales , Humanos
6.
BMC Cancer ; 17(1): 625, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28874144

RESUMEN

BACKGROUND: Light at night creates a conflicting signal to the biological clock and disrupts circadian physiology. In rodents, light at night increases the risk to develop mood disorders, overweight, disrupted energy metabolism, immune dysfunction and cancer. We hypothesized that constant light (LL) in rats may facilitate tumor growth via disrupted metabolism and increased inflammatory response in the host, inducing a propitious microenvironment for tumor cells. METHODS: Male Wistar rats were exposed to LL or a regular light-dark cycle (LD) for 5 weeks. Body weight gain, food consumption, triglycerides and glucose blood levels were evaluated; a glucose tolerance test was also performed. Inflammation and sickness behavior were evaluated after the administration of intravenous lipopolysaccharide. Tumors were induced by subcutaneous inoculation of glioma cells (C6). In tumor-bearing rats, the metabolic state and immune cells infiltration to the tumor was investigated by using immunohistochemistry and flow cytometry. The mRNA expression of genes involved metabolic, growth, angiogenes and inflammatory pathways was measured in the tumor microenvironment by qPCR. Tumor growth was also evaluated in animals fed with a high sugar diet. RESULTS: We found that LL induced overweight, high plasma triglycerides and glucose levels as well as reduced glucose clearance. In response to an LPS challenge, LL rats responded with higher pro-inflammatory cytokines and exacerbated sickness behavior. Tumor cell inoculation resulted in increased tumor volume in LL as compared with LD rats, associated with high blood glucose levels and decreased triglycerides levels in the host. More macrophages were recruited in the LL tumor and the microenvironment was characterized by upregulation of genes involved in lipogenesis (Acaca, Fasn, and Pparγ), glucose uptake (Glut-1), and tumor growth (Vegfα, Myc, Ir) suggesting that LL tumors rely on these processes in order to support their enhanced growth. Genes related with the inflammatory state in the tumor microenvironment were not different between LL and LD conditions. In rats fed a high caloric diet tumor growth was similar to LL conditions. CONCLUSIONS: Data indicates that circadian disruption by LL provides a favorable condition for tumor growth by promoting an anabolic metabolism in the host.


Asunto(s)
Ritmo Circadiano , Metabolismo Energético , Neoplasias/metabolismo , Neoplasias/patología , Animales , Biomarcadores , Temperatura Corporal , Modelos Animales de Enfermedad , Glucosa/metabolismo , Xenoinjertos , Humanos , Inflamación/metabolismo , Recuento de Leucocitos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Actividad Motora , Fotoperiodo , Ratas , Microambiente Tumoral
7.
Exp Physiol ; 102(12): 1584-1595, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29113012

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the factors influencing day-night variations in postprandial triglycerides? What is the main finding and its importance? Rats show low postprandial plasma triglyceride concentrations early in the active period that are attributable to a higher uptake by skeletal muscle and brown adipose tissue. We show that these day-night variations in uptake are driven by the suprachiasmatic nucleus, probably via a Rev-erbα-mediated mechanism and independent of locomotor activity. These findings highlight that the suprachiasmatic nucleus has a major role in day-night variations in plasma triglycerides and that disturbances in our biological clock might be an important risk factor contributing to development of postprandial hyperlipidaemia. Energy metabolism follows a diurnal pattern, mainly driven by the suprachiasmatic nucleus (SCN), and disruption of circadian regulation has been linked to metabolic abnormalities. Indeed, epidemiological evidence shows that night work is a risk factor for cardiovascular disease, and postprandial hyperlipidaemia is an important contributor. Therefore, the aim of this work was to investigate the factors that drive day-night variations in postprandial triglycerides (TGs). Intact and SCN-lesioned male Wistar rats were subjected to an oral fat challenge during the beginning of the rest phase (day) or the beginning of the active phase (night). The plasma TG profile was evaluated and tissue TG uptake assayed. After the fat challenge, intact rats showed lower postprandial plasma TG concentrations early in the night when compared with the day. However, no differences were observed in the rate of intestinal TG secretion between day and night. Instead, there was a higher uptake of TG by skeletal muscle and brown adipose tissue early in the active phase (night) when compared with the rest phase (day), and these variations were abolished in rats bearing bilateral SCN lesions. Rev-erbα gene expression suggests this as a possible mediator of the mechanism linking the SCN and day-night variations in TG uptake. These findings show that the SCN has a major role in day-night variations in plasma TGs by promoting TG uptake into skeletal muscle and brown adipose tissue. Consequently, disturbance of the biological clock might be an important risk factor contributing to the development of hyperlipidaemia.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Relojes Biológicos/fisiología , Ritmo Circadiano , Grasas de la Dieta/sangre , Metabolismo Energético , Músculo Esquelético/metabolismo , Periodo Posprandial , Núcleo Supraquiasmático/fisiología , Triglicéridos/sangre , Ciclos de Actividad , Animales , Grasas de la Dieta/administración & dosificación , Regulación de la Expresión Génica , Masculino , Actividad Motora , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fotoperiodo , Ratas Wistar , Transducción de Señal , Núcleo Supraquiasmático/metabolismo , Factores de Tiempo
8.
J Pineal Res ; 62(4)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28226198

RESUMEN

Second generation antipsychotics (SGA) are associated with adverse cardiometabolic side effects contributing to premature mortality in patients. While mechanisms mediating these cardiometabolic side effects remain poorly understood, three independent studies recently demonstrated that melatonin was protective against cardiometabolic risk in SGA-treated patients. As one of the main target areas of circulating melatonin in the brain is the suprachiasmatic nucleus (SCN), we hypothesized that the SCN is involved in SGA-induced early cardiovascular effects in Wistar rats. We evaluated the acute effects of olanzapine and melatonin in the biological clock, paraventricular nucleus and autonomic nervous system using immunohistochemistry, invasive cardiovascular measurements, and Western blot. Olanzapine induced c-Fos immunoreactivity in the SCN followed by the paraventricular nucleus and dorsal motor nucleus of the vagus indicating a potent induction of parasympathetic tone. The involvement of a SCN-parasympathetic neuronal pathway after olanzapine administration was further documented using cholera toxin-B retrograde tracing and vasoactive intestinal peptide immunohistochemistry. Olanzapine-induced decrease in blood pressure and heart rate confirmed this. Melatonin abolished olanzapine-induced SCN c-Fos immunoreactivity, including the parasympathetic pathway and cardiovascular effects while brain areas associated with olanzapine beneficial effects including the striatum, ventral tegmental area, and nucleus accumbens remained activated. In the SCN, olanzapine phosphorylated the GSK-3ß, a regulator of clock activity, which melatonin prevented. Bilateral lesions of the SCN prevented the effects of olanzapine on parasympathetic activity. Collectively, results demonstrate the SCN as a key region mediating the early effects of olanzapine on cardiovascular function and show melatonin has opposing and potentially protective effects warranting additional investigation.


Asunto(s)
Benzodiazepinas/toxicidad , Relojes Biológicos/efectos de los fármacos , Melatonina/uso terapéutico , Animales , Depresores del Sistema Nervioso Central/farmacología , Depresores del Sistema Nervioso Central/uso terapéutico , Hemodinámica/efectos de los fármacos , Inmunohistoquímica , Masculino , Melatonina/farmacología , Núcleo Accumbens/efectos de los fármacos , Olanzapina , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Núcleo Supraquiasmático/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
9.
Exp Physiol ; 101(12): 1463-1471, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27753158

RESUMEN

NEW FINDINGS: What is the topic of this review? Both branches of the autonomic nervous system are involved in the regulation of the inflammatory response. We explore how the hypothalamus may influence this process. What advances does it highlight? We analyse how a lipopolysaccharide signal is transmitted to the brain and which areas participate in the response of the brain to lipopolysaccharide. Recent studies show that the hypothalamus can influence the inflammatory response by modifying the autonomic output. The biological clock, the suprachiasmatic nucleus, is integrated into this circuit, putting a time stamp on the intensity of the inflammatory response. The brain is responsible for maintaining homeostasis of the organism, constantly adjusting its output via hormones and the autonomic nervous system to reach an optimal setting in every compartment of the body. Also, the immune system is under strong control of the brain. Apart from the conventional systemic responses evoked by the brain during inflammation, such as hypothalamic-pituitary-adrenal axis activation and the induction of sickness behaviour, the autonomic nervous system is now recognized to exert regulatory effects on the inflammatory response. Both branches of the autonomic nervous system are proposed to influence the inflammatory process. Here, we focus on those areas of the brain that might be involved in sensing inflammatory stimuli, followed by how that sensing could change the output of the autonomic nervous system in order to regulate the inflammatory response. Finally, we will discuss how the defenses of the body against a lipopolysaccharide challenge are organized by the hypothalamus.


Asunto(s)
Hipotálamo/fisiología , Sistema Inmunológico/fisiología , Animales , Sistema Nervioso Autónomo/fisiología , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Inflamación/fisiopatología
10.
Nutr Res Rev ; 29(2): 180-193, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27364352

RESUMEN

As obesity and metabolic diseases rise, there is need to investigate physiological and behavioural aspects associated with their development. Circadian rhythms have a profound influence on metabolic processes, as they prepare the body to optimise energy use and storage. Moreover, food-related signals confer temporal order to organs involved in metabolic regulation. Therefore food intake should be synchronised with the suprachiasmatic nucleus (SCN) to elaborate efficient responses to environmental challenges. Human studies suggest that a loss of synchrony between mealtime and the SCN promotes obesity and metabolic disturbances. Animal research using different paradigms has been performed to characterise the effects of timing of food intake on metabolic profiles. Therefore the purpose of the present review is to critically examine the evidence of animal studies, to provide a state of the art on metabolic findings and to assess whether the paradigms used in rodent models give the evidence to support a 'best time' for food intake. First we analyse and compare the current findings of studies where mealtime has been shifted out of phase from the light-dark cycle. Then, we analyse studies restricting meal times to different moments within the active period. So far animal studies correlate well with human studies, demonstrating that restricting food intake to the active phase limits metabolic disturbances produced by high-energy diets and that eating during the inactive/sleep phase leads to a worse metabolic outcome. Based on the latter we discuss the missing elements and possible mechanisms leading to the metabolic consequences, as these are still lacking.


Asunto(s)
Ritmo Circadiano , Ingestión de Alimentos , Obesidad , Núcleo Supraquiasmático/fisiología , Animales , Humanos , Actividad Motora
11.
Bipolar Disord ; 16(4): 410-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24636483

RESUMEN

OBJECTIVE: Second-generation antipsychotics (SGAs) are among the first-line treatments for bipolar disorder and schizophrenia, but have a tendency to generate metabolic disturbances. These features resemble a metabolic syndrome for which a central autonomic imbalance has been proposed that may originate from the hypothalamic suprachiasmatic nuclei. In a clinical trial, we hypothesized that melatonin, a hormone that regulates the suprachiasmatic nucleus, could attenuate SGA-induced adverse metabolic effects. METHODS: In an eight-week, double-blind, randomized, placebo-controlled, parallel-group clinical trial, we evaluated the metabolic effect of melatonin in SGA-treated patients in terms of weight, blood pressure, lipid, glucose, body composition, and anthropometric measures. A total of 44 patients treated with SGAs, 20 with bipolar disorder and 24 with schizophrenia, randomly received placebo (n = 24) or melatonin 5 mg (n = 20). RESULTS: The melatonin group showed a decrease in diastolic blood pressure (5.1 versus 1.1 mmHg for placebo, p = 0.003) and attenuated weight gain (1.5 versus 2.2 kg for placebo, F = 4.512, p = 0.040) compared to the placebo group. The strong beneficial metabolic effects of melatonin in comparison to placebo on fat mass (0.2 versus 2.7 kg, respectively, p = 0.032) and diastolic blood pressure (5.7 versus 5.5 mmHg, respectively, p = 0.001) were observed in the bipolar disorder and not in the schizophrenia group. No adverse events were reported. CONCLUSIONS: Our results show that melatonin is effective in attenuating SGAs' adverse metabolic effects, particularly in bipolar disorder. The clinical findings allow us to propose that SGAs may disturb a centrally mediated metabolic balance that causes adverse metabolic effects and that nightly administration of melatonin helps to restore. Melatonin could become a safe and cost-effective therapeutic option to attenuate or prevent SGA metabolic effects.


Asunto(s)
Antioxidantes/uso terapéutico , Melatonina/uso terapéutico , Trastornos Mentales/complicaciones , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/etiología , Adulto , Análisis de Varianza , Antropometría , Trastorno Bipolar/complicaciones , Trastorno Bipolar/tratamiento farmacológico , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Masculino , Trastornos Mentales/tratamiento farmacológico , Estudios Retrospectivos , Adulto Joven
12.
Proc Natl Acad Sci U S A ; 108(14): 5813-8, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21402951

RESUMEN

Food anticipatory behavior (FAA) is induced by limiting access to food for a few hours daily. Animals anticipate this scheduled meal event even without the suprachiasmatic nucleus (SCN), the biological clock. Consequently, a food-entrained oscillator has been proposed to be responsible for meal time estimation. Recent studies suggested the dorsomedial hypothalamus (DMH) as the site for this food-entrained oscillator, which has led to considerable controversy in the literature. Herein we demonstrate by means of c-Fos immunohistochemistry that the neuronal activity of the suprachiasmatic nucleus (SCN), which signals the rest phase in nocturnal animals, is reduced when animals anticipate the scheduled food and, simultaneously, neuronal activity within the DMH increases. Using retrograde tracing and confocal analysis, we show that inhibition of SCN neuronal activity is the consequence of activation of GABA-containing neurons in the DMH that project to the SCN. Next, we show that DMH lesions result in a loss or diminution of FAA, simultaneous with increased activity in the SCN. A subsequent lesion of the SCN restored FAA. We conclude that in intact animals, FAA may only occur when the DMH inhibits the activity of the SCN, thus permitting locomotor activity. As a result, FAA originates from a neuronal network comprising an interaction between the DMH and SCN. Moreover, this study shows that the DMH-SCN interaction may serve as an intrahypothalamic system to gate activity instead of rest overriding circadian predetermined temporal patterns.


Asunto(s)
Anticipación Psicológica/fisiología , Núcleo Hipotalámico Dorsomedial/fisiología , Alimentos , Modelos Neurológicos , Núcleo Supraquiasmático/fisiología , Animales , Núcleo Hipotalámico Dorsomedial/patología , Inmunohistoquímica , Ácido Kaínico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Núcleo Supraquiasmático/patología
14.
Adv Biol (Weinh) ; 7(11): e2200324, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37017509

RESUMEN

One possible pathological mechanism underlying hypertension and its related health consequences is dysfunction of the circadian system-a network of coupled circadian clocks that generates and orchestrates rhythms of ≈24 h in behavior and physiology. To better understand the role of circadian function during the development of hypertension, circadian regulation of motor activity is investigated in spontaneously hypertensive rats (SHRs) before the onset of hypertension and in their age-matched controls-Wistar Kyoto rats (WKYs). Two complementary properties in locomotor activity fluctuations are examined to assessthe multiscale regulatory function of the circadian control network: 1) rhythmicity at ≈24 h and 2) fractal patterns-similar temporal correlation at different time scales (≈0.5-8 h). Compared to WKYs, SHRs have more stable and less fragmented circadian activity rhythms but the changes in the rhythms (e.g., period and amplitude) from constant dark to light conditions are reduced or opposite. SHRs also have altered fractal activity patterns, displaying activity fluctuations with excessive regularity at small timescales that are linked to rigid physiological states. These different rhythmicity/fractal patterns and their different responses to light in SHRs indicate that an altered circadian function may be involved in the development of hypertension.


Asunto(s)
Hipertensión , Prehipertensión , Ratas , Animales , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Fractales , Actividad Motora/fisiología
15.
Curr Biol ; 33(20): 4343-4352.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37725978

RESUMEN

Short sleep is linked to disturbances in glucose metabolism and may induce a prediabetic condition. The biological clock in the suprachiasmatic nucleus (SCN) regulates the glucose rhythm in the circulation and the sleep-wake cycle. SCN vasopressin neurons (SCNVP) control daily glycemia by regulating the entrance of glucose into the arcuate nucleus (ARC). Thus, we hypothesized that sleep delay may influence SCN neuronal activity. We, therefore, investigated the role of SCNVP when sleep is disrupted by forced locomotor activity. After 2 h of sleep delay, rats exhibited decreased SCNVP neuronal activity, a decrease in the glucose transporter GLUT1 expression in tanycytes lining the third ventricle, lowered glucose entrance into the ARC, and developed hyperglycemia. The association between reduced SCNVP neuronal activity and hyperglycemia in sleep-delayed rats was evidenced by injecting intracerebroventricular vasopressin; this increased GLUT1 immunoreactivity in tanycytes, thus promoting normoglycemia. Following sleep recovery, glucose levels decreased, whereas SCNVP neuronal activity increased. These results imply that sleep-delay-induced changes in SCNVP activity lead to glycemic impairment, inferring that disruption of biological clock function might represent a critical step in developing type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Ratas , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Ritmo Circadiano/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Núcleo Supraquiasmático/fisiología , Sueño , Glucosa/metabolismo , Hiperglucemia/metabolismo , Vasopresinas/metabolismo
16.
Adv Biol (Weinh) ; 7(11): e2200116, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-35818679

RESUMEN

Eating during the rest phase is associated with metabolic syndrome, proposed to result from a conflict between food consumption and the energy-saving state imposed by the circadian system. However, in nocturnal rodents, eating during the rest phase (day-feeding, DF) also implies food intake during light exposure. To investigate whether light exposure contributes to DF-induced metabolic impairments, animals receive food during the subjective day without light. A skeleton photoperiod (SP) is used to entrain rats to a 12:12 cycle with two short light pulses framing the subjective day. DF-induced adiposity is prevented by SP, suggesting that the conflict between light and feeding stimulates fat accumulation. However, all animals under SP conditions develop glucose intolerance regardless of their feeding schedule. Moreover, animals under SP with ad libitum or night-feeding have increased adiposity. SP animals show a delayed onset of the daily rise in body temperature and energy expenditure and shorter duration of nighttime activity, which may contribute to the metabolic disturbances. These data emphasize that metabolic homeostasis can only be achieved when all daily cycling variables are synchronized. Even small shifts in the alignment of different metabolic rhythms, such as those induced by SP, may predispose individuals to metabolic disease.


Asunto(s)
Intolerancia a la Glucosa , Fotoperiodo , Ratas , Animales , Adiposidad , Conducta Alimentaria , Ritmo Circadiano , Intolerancia a la Glucosa/etiología , Obesidad/etiología , Esqueleto
17.
Curr Biol ; 32(4): 796-805.e4, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35030330

RESUMEN

Glycemia is maintained within very narrow boundaries with less than 5% variation at a given time of the day. However, over the circadian cycle, glycemia changes with almost 50% difference. How the suprachiasmatic nucleus, the biological clock, maintains these day-night variations with such tiny disparities remains obscure. We show that via vasopressin release at the beginning of the sleep phase, the suprachiasmatic nucleus increases the glucose transporter GLUT1 in tanycytes. Hereby GLUT1 promotes glucose entrance into the arcuate nucleus, thereby lowering peripheral glycemia. Conversely, blocking vasopressin activity or the GLUT1 transporter at the daily trough of glycemia increases circulating glucose levels usually seen at the peak of the rhythm. Thus, biological clock-controlled mechanisms promoting glucose entry into the arcuate nucleus explain why peripheral blood glucose is low before sleep onset.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Glucosa , Glucemia , Ritmo Circadiano , Transportador de Glucosa de Tipo 1 , Núcleo Supraquiasmático , Vasopresinas
18.
Front Nutr ; 9: 999156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204367

RESUMEN

Light at night is an emergent problem for modern society. Rodents exposed to light at night develop a loss of circadian rhythms, which leads to increased adiposity, altered immune response, and increased growth of tumors. In female rats, constant light (LL) eliminates the estrous cycle leading to a state of persistent estrus. The suprachiasmatic nucleus (SCN) drives circadian rhythms, and it interacts with the neuroendocrine network necessary for reproductive function. Timed restricted feeding (RF) exerts a powerful entraining influence on the circadian system, and it can influence the SCN activity and can restore rhythmicity or accelerate re-entrainment in experimental conditions of shift work or jet lag. The present study explored RF in female rats exposed to LL, with the hypothesis that this cyclic condition can rescue or prevent the loss of daily rhythms and benefit the expression of the estrous cycle. Two different feeding schedules were explored: 1. A 12-h food/12-h fasting schedule applied to arrhythmic rats after 3 weeks in LL, visualized as a rescue strategy (LL + RFR, 3 weeks), or applied simultaneously with the first day of LL as a preventive strategy (LL + RFP, 6 weeks). 2. A 12-h window of food intake with food given in four distributed pulses (every 3 h), applied after 3 weeks in LL, as a rescue strategy (LL + PR, 3 weeks) or applied simultaneously with the first day of LL as a preventive strategy (LL + PP, 6 weeks). Here, we present evidence that scheduled feeding can drive daily rhythms of activity and temperature in rats exposed to LL. However, the protocol of distributed feeding pulses was more efficient to restore the day-night activity and core temperature as well as the c-Fos day-night change in the SCN. Likewise, the distributed feeding partially restored the estrous cycle and the ovary morphology under LL condition. Data here provided indicate that the 12-h feeding/12-h fasting window determines the rest-activity cycle and can benefit directly the circadian and reproductive function. Moreover, this effect is stronger when food is distributed along the 12 h of subjective night.

19.
Handb Clin Neurol ; 180: 45-63, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225948

RESUMEN

A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e., the environment that we live in and that is subject to major changes, such as temperature, humidity, and food availability) and our internal environment (i.e., the environment formed by the fluids surrounding our bodily tissues and that has a very stable composition) was pointed out in 1878 by Claude Bernard (1814-1878). Later on, it was indicated by Walter Cannon (1871-1945) that the internal environment is not really constant, but rather shows limited variability. Cannon named the mechanism maintaining this limited variability homeostasis. Claude Bernard envisioned that, for optimal health, all physiologic processes in the body needed to maintain homeostasis and should be in perfect harmony with each other. This is illustrated by the fact that, for instance, during the sleep-wake cycle important elements of our physiology such as body temperature, circulating glucose, and cortisol levels show important variations but are in perfect synchrony with each other. These variations are driven by the biologic clock in interaction with hypothalamic target areas, among which is the paraventricular nucleus of the hypothalamus (PVN), a core brain structure that controls the neuroendocrine and autonomic nervous systems and thus is key for integrating central and peripheral information and implementing homeostasis. This chapter focuses on the anatomic connections between the biologic clock and the PVN to modulate homeostasis according to the daily sleep-wake rhythm. Experimental studies have revealed a highly specialized organization of the connections between the clock neurons and neuroendocrine system as well as preautonomic neurons in the PVN. These complex connections ensure a logical coordination between behavioral, endocrine, and metabolic functions that helps the organism maintain homeostasis throughout the day.


Asunto(s)
Hipotálamo , Núcleo Hipotalámico Paraventricular , Sistema Nervioso Autónomo , Humanos , Neuronas , Sistemas Neurosecretores
20.
Neurosci Lett ; 762: 136144, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34332031

RESUMEN

Baroreflex sensitivity (BRS) is an important function of the nervous system and essential for maintaining blood pressure levels in the physiological range. In hypertension, BRS is decreased both in man and animals. Although increased sympathetic activity is thought to be the main cause of decreased BRS, hence the development of hypertension, the BRS is regulated by both sympathetic (SNS) and parasympathetic (PNS) nervous system. Here, we analyzed neuropeptide changes in the lateral hypothalamus (LH), which favours the SNS activity, as well as in PNS nuclei in the brainstem of spontaneously hypertensive rats (SHR) and their normotensive controls (Wistar Kyoto rats- WKY). The analyses revealed that in the WKY rats the hypothalamic orexin system, known for its role in sympathetic activation, showed a substantial decrease when animals age. At the same time, however, such a decrease was not observed when hypertension developed in the SHR. In contrast, Neuropeptide FF (NPFF) and Prolactin Releasing Peptide (PrRP) expression in the PNS associated Nucleus Tractus Solitarius (NTS) and Dorsal Motor Nucleus of the Vagus (DMV) diminished substantially, not only after the establishment of hypertension but also before its onset. Therefore, the current results indicate early changes in areas of the central nervous system involved in SNS and PNS control of blood pressure and associated with the development of hypertension.


Asunto(s)
Tronco Encefálico/metabolismo , Hipertensión/fisiopatología , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Orexinas/metabolismo , Animales , Sistema Nervioso Autónomo/fisiopatología , Barorreflejo/fisiología , Tronco Encefálico/fisiopatología , Hipotálamo/fisiopatología , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA