Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurooncol ; 167(1): 155-167, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358406

RESUMEN

BACKGROUND: Emerging evidence suggests that treatment of NSCLC brain metastases with immune checkpoint inhibitors (ICIs) is associated with response rates similar to those of extracranial disease. Programmed death-ligand 1 (PD-L1) tumor proportion score (TPS) serves as a predictive biomarker for ICI response. However, the predictive value of brain metastasis-specific (intracranial) PD-L1 TPS is not established. We investigated the role of intra- and extracranial PD-L1 TPS in NSCLC patients treated with ICI following brain metastasis resection. METHODS: Clinical data from NSCLC patients treated with ICI following brain metastasis resection (n = 64) were analyzed. PD-L1 TPS of brain metastases (n = 64) and available matched extracranial tumor tissue (n = 44) were assessed via immunohistochemistry. Statistical analyses included cut point estimation via maximally selected rank statistics, Kaplan-Meier estimates, and multivariable Cox regression analysis for intracranial progression-free survival (icPFS), extracranial progression-free survival (ecPFS), and overall survival (OS). RESULTS: PD-L1 expression was found in 54.7% of brain metastases and 68.2% of extracranial tumor tissues, with a median intra- and extracranial PD-L1 TPS of 7.5% (0 - 50%, IQR) and 15.0% (0 - 80%, IQR), respectively. In matched tissue samples, extracranial PD-L1 TPS was significantly higher than intracranial PD-L1 TPS (p = 0.013). Optimal cut points for intracranial and extracranial PD-L1 TPS varied according to outcome parameter assessed. Notably, patients with a high intracranial PD-L1 TPS (> 40%) exhibited significantly longer icPFS as compared to patients with a low intracranial PD-L1 TPS (≤ 40%). The cut point of 40% for intracranial PD-L1 TPS was independently associated with OS, icPFS and ecPFS in multivariable analyses. CONCLUSION: Our study highlights the potential role of intracranial PD-L1 TPS in NSCLC, which could be used to predict ICI response in cases where extracranial tissue is not available for PD-L1 assessment as well as to specifically predict intracranial response.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/cirugía , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Estudios Retrospectivos
2.
Radiother Oncol ; : 110444, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067705

RESUMEN

BACKGROUND: Radionecrosis is a common complication in radiation oncology, while mechanisms and risk factors have yet to be fully explored. We therefore conducted a systematic review to understand the pathogenesis and identify factors that significantly affect the development. METHODS: We performed a systematic literature search based on the PRISMA guidelines using PubMed, Ovid, and Web of Science databases. The complete search strategy can be found as a preregistered protocol on PROSPERO (CRD42023361662). RESULTS: We included 83 studies, most involving healthy animals (n = 72, 86.75 %). High doses of hemispherical irradiation of 30 Gy in rats and 50 Gy in mice led repeatedly to radionecrosis among different studies and set-ups. Higher dose and larger irradiated volume were associated with earlier onset. Fractionated schedules proved limited effectiveness in the prevention of radionecrosis. Distinct anatomical brain structures respond to irradiation in various ways. White matter appears to be more vulnerable than gray matter. Younger age, more evolved animal species, and genetic background were also significant factors, whereas sex was irrelevant. Only 13.25 % of the studies were performed on primary brain tumor bearing animals, no studies on brain metastases are currently available. CONCLUSION: This systematic review identified various factors that significantly affect the induction of radionecrosis. The current state of research neglects the utilization of animal models of brain tumors, even though patients with brain malignancies constitute the largest group receiving brain irradiation. This latter aspect should be primarily addressed when developing an experimental radionecrosis model for translational implementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA