RESUMEN
OBJECTIVE: Common variable immunodeficiency (CVID) is the most common clinically relevant entity of inborn errors of immunity. In these patients, an altered gut microbiome composition with reduced diversity has been described. We sought to investigate the fecal immunoglobulin levels and their impact on the gut microflora in patients with CVID. METHODS: We analyzed the gut microbiome of 28 CVID patients and 42 healthy donors (HDs), including 21 healthy household controls, by sequencing the V3 and V4 regions of the bacterial 16S rRNA gene extracted from stool samples. The fecal levels of immunoglobulin A, M, and G of 27 CVID patients and 41 HDs were measured in the supernatant by ELISA and normalized for protein concentration. RESULTS: We measured decreased IgA and increased IgG in stool samples from CVID patients compared to HDs. Decreased levels of fecal IgA and IgM were associated with reduced microbial diversity and increased dysbiosis. We identified a large number of significantly differentially abundant taxa, especially in patients with decreased IgA levels, but also in patients with decreased IgM levels compared to their counterparts. CONCLUSIONS: CVID patients have an altered gut microbiota composition, which is most prevalent in patients with decreased fecal IgA and IgM levels. In this study, we identify fecal immunoglobulins as a potential modifier of the gut microbiome in CVID patients.
Asunto(s)
Inmunodeficiencia Variable Común , Microbioma Gastrointestinal , Humanos , ARN Ribosómico 16S/genética , Inmunoglobulina A , Inmunoglobulina M , HecesRESUMEN
PURPOSE: About 15% of patients with common variable immunodeficiency (CVID) develop a small intestinal enteropathy, which resembles celiac disease with regard to histopathology but evolves from a distinct, poorly defined pathogenesis that has been linked in some cases to chronic norovirus (NV) infection. Interferon-driven inflammation is a prominent feature of CVID enteropathy, but it remains unknown how NV infection may contribute. METHODS: Duodenal biopsies of CVID patients, stratified according to the presence of villous atrophy (VA), IgA plasma cells (PCs), and chronic NV infection, were investigated by flow cytometry, multi-epitope-ligand cartography, bulk RNA-sequencing, and RT-qPCR of genes of interest. RESULTS: VA development was connected to the lack of intestinal (IgA+) PC, a T helper 1/T helper 17 cell imbalance, and increased recruitment of granzyme+CD8+ T cells and pro-inflammatory macrophages to the affected site. A mixed interferon type I/III and II signature occurred already in the absence of histopathological changes and increased with the severity of the disease and in the absence of (IgA+) PCs. Chronic NV infection exacerbated this signature when compared to stage-matched NV-negative samples. CONCLUSIONS: Our study suggests that increased IFN signaling and T-cell cytotoxicity are present already in mild and are aggravated in severe stages (VA) of CVID enteropathy. NV infection preempts local high IFN-driven inflammation, usually only seen in VA, at milder disease stages. Thus, revealing the impact of different drivers of the pathological mixed IFN type I/III and II signature may allow for more targeted treatment strategies in CVID enteropathy and supports the goal of viral elimination.
Asunto(s)
Infecciones por Caliciviridae , Inmunodeficiencia Variable Común , Norovirus , Humanos , Atrofia/complicaciones , Atrofia/patología , Infecciones por Caliciviridae/inmunología , Linfocitos T CD8-positivos , Inmunodeficiencia Variable Común/complicaciones , Inmunodeficiencia Variable Común/inmunología , Inmunoglobulina A , Inflamación/complicaciones , Interferones , Norovirus/fisiologíaRESUMEN
Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). Although currently used GVHD treatment regimens target the donor immune system, we explored here an approach that aims at protecting and regenerating Paneth cells (PCs) and intestinal stem cells (ISCs). Glucagon-like-peptide-2 (GLP-2) is an enteroendocrine tissue hormone produced by intestinal L cells. We observed that acute GVHD reduced intestinal GLP-2 levels in mice and patients developing GVHD. Treatment with the GLP-2 agonist, teduglutide, reduced de novo acute GVHD and steroid-refractory GVHD, without compromising graft-versus-leukemia (GVL) effects in multiple mouse models. Mechanistically GLP-2 substitution promoted regeneration of PCs and ISCs, which enhanced production of antimicrobial peptides and caused microbiome changes. GLP-2 expanded intestinal organoids and reduced expression of apoptosis-related genes. Low numbers of L cells in intestinal biopsies and high serum levels of GLP-2 were associated with a higher incidence of nonrelapse mortality in patients undergoing allo-HCT. Our findings indicate that L cells are a target of GVHD and that GLP-2-based treatment of acute GVHD restores intestinal homeostasis via an increase of ISCs and PCs without impairing GVL effects. Teduglutide could become a novel combination partner for immunosuppressive GVHD therapy to be tested in clinical trials.
Asunto(s)
Péptido 2 Similar al Glucagón/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Intestinos/efectos de los fármacos , Células de Paneth/efectos de los fármacos , Péptidos/uso terapéutico , Células Madre/efectos de los fármacos , Animales , Femenino , Fármacos Gastrointestinales/uso terapéutico , Enfermedad Injerto contra Huésped/patología , Humanos , Intestinos/citología , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células de Paneth/patología , Células Madre/patología , Trasplante Homólogo/efectos adversosRESUMEN
Acute graft-versus-host disease causes significant mortality in patients undergoing allogeneic hematopoietic cell transplantation. Immunosuppressive treatment for graft-versus-host disease can impair the beneficial graft-versus-leukemia effect and facilitate malignancy relapse. Therefore, novel approaches that protect and regenerate injured tissues without impeding the donor immune system are needed. Bile acids regulate multiple cellular processes and are in close contact with the intestinal epithelium, a major target of acute graft-versus-host disease. Here, we found that the bile acid pool is reduced following graft-versus-host disease induction in a preclinical model. We evaluated the efficacy of bile acids to protect the intestinal epithelium without reducing anti-tumor immunity. We observed that application of bile acids decreased cytokine-induced cell death in intestinal organoids and cell lines. Systemic prophylactic administration of tauroursodeoxycholic acid, the most potent compound in our in vitro studies, reduced graft-versus-host disease severity in three different murine transplantation models. This effect was mediated by decreased activity of the antigen presentation machinery and subsequent prevention of apoptosis of the intestinal epithelium. Moreover, bile acid administration did not alter the bacterial composition in the intestine suggesting that its effects are cell-specific and independent of the microbiome. Treatment of human and murine leukemic cell lines with tauroursodeoxycholic acid did not interfere with the expression of antigen presentation-related molecules. Systemic T cell expansion and especially their cytotoxic capacity against leukemic cells remained intact. This study establishes a role for bile acids in the prevention of acute graft-versus-host disease without impairing the graft-versus-leukemia effect. In particular, we provide a scientific rationale for the systematic use of tauroursodeoxycholic acid in patients undergoing allogeneic hematopoietic cell transplantation.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Animales , Presentación de Antígeno , Ácidos y Sales Biliares , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Intestinos , Ratones , Trasplante HomólogoRESUMEN
BACKGROUND: An increasing number of NFKB1 variants are being identified in patients with heterogeneous immunologic phenotypes. OBJECTIVE: To characterize the clinical and cellular phenotype as well as the management of patients with heterozygous NFKB1 mutations. METHODS: In a worldwide collaborative effort, we evaluated 231 individuals harboring 105 distinct heterozygous NFKB1 variants. To provide evidence for pathogenicity, each variant was assessed in silico; in addition, 32 variants were assessed by functional in vitro testing of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) signaling. RESULTS: We classified 56 of the 105 distinct NFKB1 variants in 157 individuals from 68 unrelated families as pathogenic. Incomplete clinical penetrance (70%) and age-dependent severity of NFKB1-related phenotypes were observed. The phenotype included hypogammaglobulinemia (88.9%), reduced switched memory B cells (60.3%), and respiratory (83%) and gastrointestinal (28.6%) infections, thus characterizing the disorder as primary immunodeficiency. However, the high frequency of autoimmunity (57.4%), lymphoproliferation (52.4%), noninfectious enteropathy (23.1%), opportunistic infections (15.7%), autoinflammation (29.6%), and malignancy (16.8%) identified NF-κB1-related disease as an inborn error of immunity with immune dysregulation, rather than a mere primary immunodeficiency. Current treatment includes immunoglobulin replacement and immunosuppressive agents. CONCLUSIONS: We present a comprehensive clinical overview of the NF-κB1-related phenotype, which includes immunodeficiency, autoimmunity, autoinflammation, and cancer. Because of its multisystem involvement, clinicians from each and every medical discipline need to be made aware of this autosomal-dominant disease. Hematopoietic stem cell transplantation and NF-κB1 pathway-targeted therapeutic strategies should be considered in the future.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Mutación , Subunidad p50 de NF-kappa B/genética , Fenotipo , Adulto , Anciano , Autoinmunidad/genética , Variación Biológica Poblacional , Biomarcadores , Manejo de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Estudios de Asociación Genética/métodos , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pronóstico , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Caspase activation and recruitment domain 11 (CARD11) encodes a scaffold protein in lymphocytes that links antigen receptor engagement with downstream signaling to nuclear factor κB, c-Jun N-terminal kinase, and mechanistic target of rapamycin complex 1. Germline CARD11 mutations cause several distinct primary immune disorders in human subjects, including severe combined immune deficiency (biallelic null mutations), B-cell expansion with nuclear factor κB and T-cell anergy (heterozygous, gain-of-function mutations), and severe atopic disease (loss-of-function, heterozygous, dominant interfering mutations), which has focused attention on CARD11 mutations discovered by using whole-exome sequencing. OBJECTIVES: We sought to determine the molecular actions of an extended allelic series of CARD11 and to characterize the expanding range of clinical phenotypes associated with heterozygous CARD11 loss-of-function alleles. METHODS: Cell transfections and primary T-cell assays were used to evaluate signaling and function of CARD11 variants. RESULTS: Here we report on an expanded cohort of patients harboring novel heterozygous CARD11 mutations that extend beyond atopy to include other immunologic phenotypes not previously associated with CARD11 mutations. In addition to (and sometimes excluding) severe atopy, heterozygous missense and indel mutations in CARD11 presented with immunologic phenotypes similar to those observed in signal transducer and activator of transcription 3 loss of function, dedicator of cytokinesis 8 deficiency, common variable immunodeficiency, neutropenia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome. Pathogenic variants exhibited dominant negative activity and were largely confined to the CARD or coiled-coil domains of the CARD11 protein. CONCLUSION: These results illuminate a broader phenotypic spectrum associated with CARD11 mutations in human subjects and underscore the need for functional studies to demonstrate that rare gene variants encountered in expected and unexpected phenotypes must nonetheless be validated for pathogenic activity.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/inmunología , Guanilato Ciclasa/genética , Guanilato Ciclasa/inmunología , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/inmunología , Adulto , Femenino , Humanos , Masculino , Mutación , FenotipoRESUMEN
Some patients diagnosed with common variable immunodeficiency (CVID) actually suffer from combined immunodeficiency (CID) and therefore may require a different, CID-adapted treatment. Several CD4 T-cell-based criteria have been proposed in the past to identify patients with CID within the cohort of adult CVID patients. In this monocentric study, we used retrospective immunological and clinical data of 238 CVID patients to compare four different proposals of how to define CID among CVID patients. We demonstrate that none of the current definitions sufficiently separates CID from CVID patients and that the relative reduction of naïve CD4 T cells <10% has the highest sensitivity of all tested markers for patients with clinical complications often associated with CID. Thus, a very low percentage of naïve CD4 T cells in any adult CVID patient should raise suspicion, but is not sufficient to define CID among CVID patients.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inmunodeficiencia Variable Común/diagnóstico , Inmunodeficiencia Combinada Grave/diagnóstico , Subgrupos de Linfocitos T/inmunología , Adulto , Biomarcadores , Células Cultivadas , Estudios de Cohortes , Diagnóstico Diferencial , Femenino , Humanos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Selección de Paciente , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: A subgroup of patients with common variable immunodeficiency (CVID) experience immune dysregulation manifesting as autoimmunity, lymphoproliferation, and organ inflammation and thereby increasing morbidity and mortality. Therefore treatment of these complications demands a deeper comprehension of their cause and pathophysiology. OBJECTIVES: On the basis of the identification of an interferon signature in patients with CVID with secondary complications and a skewed follicular helper T-cell differentiation in defined monogenic immunodeficiencies, we sought to determine the profile of CD4 memory T cells in blood and secondary lymphatic tissues of these patients. METHODS: We quantified TH1/TH2/TH17 CD4 memory T cells in blood and lymph nodes of patients with CVID using flow cytometry, analyzed their function, and correlated all findings to the burden of immune dysregulation. RESULTS: Patients with CVID with immune dysregulation had a skewed memory CD4 T-cell differentiation toward a CXCR3+CCR6- TH1 phenotype both in blood and lymph nodes. Consistent with our phenotypic findings, we observed a higher IFN-γ production in peripheral CD4 memory T cells and lymph node-derived follicular helper T cells of patients with CVID compared with those of healthy control subjects. Increased IFN-γ production was accompanied by a poor germinal center output, an accumulation of T-box transcription factor (T-bet)+ B cells in lymph nodes, and an accumulation of T-bet+CD21low B cells in peripheral blood of affected patients. CONCLUSION: Identification of excessive IFN-γ production by blood and lymph node-derived T cells of patients with CVID with immune dysregulation will offer new therapeutic avenues for this subgroup. CD21low B cells might serve as a marker of this IFN-γ-associated dysregulation.
Asunto(s)
Inmunodeficiencia Variable Común/inmunología , Memoria Inmunológica , Interferón gamma/inmunología , Receptores de Complemento 3d/inmunología , Células TH1/inmunología , Adulto , Inmunodeficiencia Variable Común/sangre , Inmunodeficiencia Variable Común/patología , Femenino , Humanos , Interferón gamma/sangre , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Receptores de Complemento 3d/sangre , Proteínas de Dominio T Box/sangre , Proteínas de Dominio T Box/inmunología , Células TH1/metabolismo , Células TH1/patologíaRESUMEN
BACKGROUND: Primary antibody deficiencies (PADs) are the most frequent primary immunodeficiencies in human subjects. The genetic causes of PADs are largely unknown. Sec61 translocon alpha 1 subunit (SEC61A1) is the major subunit of the Sec61 complex, which is the main polypeptide-conducting channel in the endoplasmic reticulum membrane. SEC61A1 is a target gene of spliced X-box binding protein 1 and strongly induced during plasma cell (PC) differentiation. OBJECTIVE: We identified a novel genetic defect and studied its pathologic mechanism in 11 patients from 2 unrelated families with PADs. METHODS: Whole-exome and targeted sequencing were conducted to identify novel genetic mutations. Functional studies were carried out ex vivo in primary cells of patients and in vitro in different cell lines to assess the effect of SEC61A1 mutations on B-cell differentiation and survival. RESULTS: We investigated 2 families with patients with hypogammaglobulinemia, severe recurrent respiratory tract infections, and normal peripheral B- and T-cell subpopulations. On in vitro stimulation, B cells showed an intrinsic deficiency to develop into PCs. Genetic analysis and targeted sequencing identified novel heterozygous missense (c.254T>A, p.V85D) and nonsense (c.1325G>T, p.E381*) mutations in SEC61A1, segregating with the disease phenotype. SEC61A1-V85D was deficient in cotranslational protein translocation, and it disturbed the cellular calcium homeostasis in HeLa cells. Moreover, SEC61A1-V85D triggered the terminal unfolded protein response in multiple myeloma cell lines. CONCLUSION: We describe a monogenic defect leading to a specific PC deficiency in human subjects, expanding our knowledge about the pathogenesis of antibody deficiencies.
Asunto(s)
Síndromes de Inmunodeficiencia/genética , Mutación/genética , Células Plasmáticas/patología , Canales de Translocación SEC/genética , Agammaglobulinemia/genética , Agammaglobulinemia/metabolismo , Agammaglobulinemia/patología , Linfocitos B/metabolismo , Linfocitos B/patología , Calcio/metabolismo , Diferenciación Celular/genética , Línea Celular , Línea Celular Tumoral , Exoma/genética , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Células Plasmáticas/metabolismo , Transporte de Proteínas/genética , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/patología , Linfocitos T/metabolismo , Linfocitos T/patología , Respuesta de Proteína Desplegada/genéticaRESUMEN
BACKGROUND: Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a negative immune regulator. Heterozygous CTLA4 germline mutations can cause a complex immune dysregulation syndrome in human subjects. OBJECTIVE: We sought to characterize the penetrance, clinical features, and best treatment options in 133 CTLA4 mutation carriers. METHODS: Genetics, clinical features, laboratory values, and outcomes of treatment options were assessed in a worldwide cohort of CTLA4 mutation carriers. RESULTS: We identified 133 subjects from 54 unrelated families carrying 45 different heterozygous CTLA4 mutations, including 28 previously undescribed mutations. Ninety mutation carriers were considered affected, suggesting a clinical penetrance of at least 67%; median age of onset was 11 years, and the mortality rate within affected mutation carriers was 16% (n = 15). Main clinical manifestations included hypogammaglobulinemia (84%), lymphoproliferation (73%), autoimmune cytopenia (62%), and respiratory (68%), gastrointestinal (59%), or neurological features (29%). Eight affected mutation carriers had lymphoma, and 3 had gastric cancer. An EBV association was found in 6 patients with malignancies. CTLA4 mutations were associated with lymphopenia and decreased T-, B-, and natural killer (NK) cell counts. Successful targeted therapies included application of CTLA-4 fusion proteins, mechanistic target of rapamycin inhibitors, and hematopoietic stem cell transplantation. EBV reactivation occurred in 2 affected mutation carriers after immunosuppression. CONCLUSIONS: Affected mutation carriers with CTLA-4 insufficiency can present in any medical specialty. Family members should be counseled because disease manifestation can occur as late as 50 years of age. EBV- and cytomegalovirus-associated complications must be closely monitored. Treatment interventions should be coordinated in clinical trials.
Asunto(s)
Antígeno CTLA-4/genética , Síndromes de Inmunodeficiencia/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Síndromes de Inmunodeficiencia/diagnóstico por imagen , Síndromes de Inmunodeficiencia/terapia , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Adulto JovenRESUMEN
Common variable immunodeficiency (CVID), characterized by recurrent infections, is the most prevalent symptomatic antibody deficiency. In â¼90% of CVID-affected individuals, no genetic cause of the disease has been identified. In a Dutch-Australian CVID-affected family, we identified a NFKB1 heterozygous splice-donor-site mutation (c.730+4A>G), causing in-frame skipping of exon 8. NFKB1 encodes the transcription-factor precursor p105, which is processed to p50 (canonical NF-κB pathway). The altered protein bearing an internal deletion (p.Asp191_Lys244delinsGlu; p105ΔEx8) is degraded, but is not processed to p50ΔEx8. Altered NF-κB1 proteins were also undetectable in a German CVID-affected family with a heterozygous in-frame exon 9 skipping mutation (c.835+2T>G) and in a CVID-affected family from New Zealand with a heterozygous frameshift mutation (c.465dupA) in exon 7. Given that residual p105 and p50translated from the non-mutated alleleswere normal, and altered p50 proteins were absent, we conclude that the CVID phenotype in these families is caused by NF-κB1 p50 haploinsufficiency.
Asunto(s)
Inmunodeficiencia Variable Común/genética , Haploinsuficiencia/genética , Subunidad p50 de NF-kappa B/genética , Australia , Secuencia de Bases , Western Blotting , Cartilla de ADN/genética , Exoma/genética , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Países Bajos , Nueva Zelanda , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Most patients with common variable immunodeficiency (CVID) present with severely reduced switched memory B-cell counts, and some display an increase of CD21low B-cell counts (CVID 21low), whereas others do not (CVID 21norm). Altered B-cell receptor (BCR) signaling might contribute to the defective memory formation observed in patients with CVID. OBJECTIVE: We sought to investigate canonical nuclear factor of κ light chain (NF-κB) signaling in B cells from patients with CVID as a central pathway in B-cell differentiation. METHODS: Degradation of inhibitor of κBα (IκBα) and p65 phosphorylation, nuclear translocation of p65, and regulation of target genes and cell function were investigated after different modes of B-cell stimulation. RESULTS: BCR-mediated canonical NF-κB signaling was impaired in all mature naive CVID-derived B cells. This impairment was more profound in naive B cells from CVID 21low patients than CVID 21norm patients and most pronounced in CD21low B cells. The signaling defect translated into reduced induction of Bcl-xL and IκBα, 2 bona fide target genes of the canonical NF-κB pathway. CD40 ligand- and Toll-like receptor 9-mediated signaling were less strongly altered. Signaling in CD21low B cells but not CD21+ B cells of patients with HIV was similarly affected. CONCLUSION: Combined with the previous description of disturbed Ca2+ signaling, the discovery of NF-κB signaling defects, especially in CVID 21low patients, suggests a broad underlying signaling defect affecting especially BCR-derived signals. Given the immune phenotype of monogenic defects affecting Ca2+ and NF-κB signaling, the latter is more likely to contribute to the humoral deficiency. The strongly disturbed BCR signaling of CD21low B cells is characteristic for this cell type and independent of the underlying disease.
Asunto(s)
Linfocitos B/inmunología , Inmunodeficiencia Variable Común/inmunología , FN-kappa B/inmunología , Adulto , Anciano , Diferenciación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Complemento 3d/inmunología , Transducción de SeñalRESUMEN
Null mutations in genes involved in V(D)J recombination cause a block in B- and T-cell development, clinically presenting as severe combined immunodeficiency (SCID). Hypomorphic mutations in the non-homologous end-joining gene DCLRE1C (encoding ARTEMIS) have been described to cause atypical SCID, Omenn syndrome, Hyper IgM syndrome and inflammatory bowel disease-all with severely impaired T-cell immunity. By whole-exome sequencing, we investigated the molecular defect in a consanguineous family with three children clinically diagnosed with antibody deficiency. We identified perfectly segregating homozygous variants in DCLRE1C in three index patients with recurrent respiratory tract infections, very low B-cell numbers and serum IgA levels. In patients, decreased colony survival after irradiation, impaired proliferative response and reduced counts of naïve T cells were observed in addition to a restricted T-cell receptor repertoire, increased palindromic nucleotides in the complementarity determining regions 3 and long stretches of microhomology at switch junctions. Defective V(D)J recombination was complemented by wild-type ARTEMIS protein in vitro. Subsequently, homozygous or compound heterozygous DCLRE1C mutations were identified in nine patients from the same geographic region. We demonstrate that DCLRE1C mutations can cause a phenotype presenting as only antibody deficiency. This novel association broadens the clinical spectrum associated with ARTEMIS mutations. Clinicians should consider the possibility that an immunodeficiency with a clinically mild initial presentation could be a combined immunodeficiency, so as to provide appropriate care for affected patients.
Asunto(s)
Proteínas Nucleares/genética , Inmunodeficiencia Combinada Grave/genética , Linfocitos B/metabolismo , Niño , Preescolar , Proteínas de Unión al ADN , Endonucleasas , Femenino , Humanos , Inmunoglobulina A/metabolismo , Masculino , Mutación/genéticaRESUMEN
PURPOSE: Determining the monogenic cause of antibody deficiency and immune dysregulation in a non-consanguineous family with healthy parents, two affected children, and one unaffected child. METHODS: Whole Exome Sequencing (WES) was performed in the index family. WES results were confirmed by Sanger Sequencing. Dried plasma spots of the male patient and his mother were analyzed for ADA2 enzymatic activity. RESULTS: Following data analysis of WES, we found a compound heterozygous mutation in CECR1 (encoding adenosine deaminase 2, ADA2) that segregated in the two affected children. Enzyme activity measurement confirmed a severely diminished ADA2 activity in our patient. The 32 year old index patient was suffering from recurrent respiratory infections and was previously diagnosed with common variable immunodeficiency (CVID), showing no signs of vasculitis. His sister had a systemic lupus erythematosus (SLE)-like phenotype and died at age 17. CONCLUSIONS: Deficiency of ADA2 (DADA2) has been reported to cause vasculopathy and early-onset stroke. Our case suggests that it should also be considered when evaluating patients with antibody deficiencies and immune dysregulation syndromes.
Asunto(s)
Adenosina Desaminasa/deficiencia , Inmunodeficiencia Variable Común/diagnóstico , Inmunoglobulina A/genética , Inmunoglobulina G/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Adenosina Desaminasa/genética , Adolescente , Adulto , Niño , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/patología , Pruebas con Sangre Seca , Exoma , Femenino , Expresión Génica , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Péptidos y Proteínas de Señalización Intercelular/genética , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Masculino , Mutación , Linaje , FenotipoRESUMEN
Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.
Asunto(s)
Antígenos de Neoplasias , Inteligencia Artificial , Inmunoterapia , Neoplasias , Medicina de Precisión , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Medicina de Precisión/métodos , Antígenos de Neoplasias/inmunología , Inmunoterapia/métodos , Biología Computacional/métodos , AnimalesRESUMEN
The transcription factor nuclear factor erythroid-2 is over-expressed in patients with myeloproliferative neoplasms irrespective of the presence of the JAK2(V617F) mutation. Our transgenic mouse model over-expressing nuclear factor erythroid-2, which recapitulates many features of myeloproliferative neoplasms including transformation to acute myeloid leukemia, clearly implicates this transcription factor in the pathophysiology of myeloproliferative neoplasms. Because the targets mediating nuclear factor erythroid-2 effects are not well characterized, we conducted microarray analysis of CD34(+) cells lentivirally transduced to over-express nuclear factor erythroid-2 or to silence this transcription factor via shRNA, in order to identify novel target genes. Here, we report that the cytokine interleukin 8 is a novel target gene. Nuclear factor erythroid-2 directly binds the interleukin 8 promoter in vivo, and these binding sites are required for promoter activity. Serum levels of interleukin 8 are known to be elevated in both polycythemia vera and primary myelofibrosis patients. Recently, increased interleukin 8 levels have been shown to be predictive of inferior survival in primary myelofibrosis patients in multivariate analysis. Therefore, one of the mechanisms by which nuclear factor erythroid-2 contributes to myeloproliferative neoplasm pathology may be increased interleukin 8 expression.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Interleucina-8/biosíntesis , Enfermedades Mielodisplásicas-Mieloproliferativas/metabolismo , Subunidad p45 del Factor de Transcripción NF-E2/fisiología , Animales , Antígenos CD34/genética , Marcación de Gen/métodos , Vectores Genéticos/administración & dosificación , Humanos , Interleucina-8/genética , Lentivirus/genética , Ratones , Enfermedades Mielodisplásicas-Mieloproliferativas/diagnóstico , Enfermedades Mielodisplásicas-Mieloproliferativas/genética , Valor Predictivo de las Pruebas , Unión Proteica/genética , Resultado del Tratamiento , Células Tumorales Cultivadas , Células U937RESUMEN
Human sterile α motif and HD domain-containing protein 1 (SAMHD1), originally described as the major cellular deoxyribonucleoside triphosphate triphosphohydrolase (dNTPase) balancing the intracellular deoxynucleotide (dNTP) pool, has come recently into focus of cancer research. As outlined in this review, SAMHD1 has been reported to be mutated in a variety of cancer types and the expression of SAMHD1 is dysregulated in many cancers. Therefore, SAMHD1 is regarded as a tumor suppressor in certain tumors. Moreover, it has been proposed that SAMHD1 might fulfill the requirements of a driver gene in tumor development or might promote a so-called mutator phenotype. Besides its role as a dNTPase, several novel cellular functions of SAMHD1 have come to light only recently, including a role as negative regulator of innate immune responses and as facilitator of DNA end resection during DNA replication and repair. Therefore, SAMHD1 can be placed at the crossroads of various cellular processes. The present review summarizes the negative role of SAMHD1 in chemotherapy sensitivity, highlights reported SAMHD1 mutations found in various cancer types, and aims to discuss functional consequences as well as underlying mechanisms of SAMHD1 dysregulation potentially involved in cancer development.
Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias , Humanos , Inmunidad Innata , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , Proteína 1 que Contiene Dominios SAM y HD/metabolismoRESUMEN
The idiotypes of B cell lymphomas represent tumor-specific antigens. T cell responses induced by idiotype vaccination in vivo are directed predominantly against CDR peptides, whereas in vitro T cells also recognize framework-derived epitopes. To investigate the mechanisms regulating the specificity of idiotype-specific T cells, BALB/c or B10.D2 mice were immunized with mature dendritic cells loaded with H-2K(d)-restricted peptides from influenza hemagglutinin, or from shared (J region) or unique (CDR3) structures of the A20 lymphoma idiotype. Antigen-specific T cells were induced in vivo by the CDR3 and influenza epitopes, but not by the J peptide. Gene expression profiling of splenic regulatory T cells revealed vaccination-induced Treg activation and proliferation. Treg activity involved J epitope-dependent IL-10 secretion and functional suppression of peptide-specific effector T cells. Vaccination-induced in vivo proliferation of transgenic hemagglutinin-specific T cells was suppressed by co-immunization with the J peptide and was restored in CD25-depleted animals. In conclusion, Treg induced by a shared idiotype epitope can systemically suppress T cell responses against idiotype-derived and immunodominant foreign epitopes in vivo. The results imply that tumor vaccines should avoid epitopes expressed by normal cells in the draining lymph node to achieve optimal anti-tumor efficacy.
Asunto(s)
Vacunas contra el Cáncer , Idiotipos de Inmunoglobulinas/inmunología , Linfoma de Células B/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Perfilación de la Expresión Génica , Antígenos H-2/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Inmunización , Idiotipos de Inmunoglobulinas/metabolismo , Región Variable de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/metabolismo , Vigilancia Inmunológica , Activación de Linfocitos , Linfoma de Células B/terapia , Ratones , Ratones Endogámicos BALB C , Fragmentos de Péptidos/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patologíaRESUMEN
BACKGROUND: We present a statistical method of analysis of biological networks based on the exponential random graph model, namely p2-model, as opposed to previous descriptive approaches. The model is capable to capture generic and structural properties of a network as emergent from local interdependencies and uses a limited number of parameters. Here, we consider one global parameter capturing the density of edges in the network, and local parameters representing each node's contribution to the formation of edges in the network. The modelling suggests a novel definition of important nodes in the network, namely social, as revealed based on the local sociality parameters of the model. Moreover, the sociality parameters help to reveal organizational principles of the network. An inherent advantage of our approach is the possibility of hypotheses testing: a priori knowledge about biological properties of the nodes can be incorporated into the statistical model to investigate its influence on the structure of the network. RESULTS: We applied the statistical modelling to the human protein interaction network obtained with Y2H experiments. Bayesian approach for the estimation of the parameters was employed. We deduced social proteins, essential for the formation of the network, while incorporating into the model information on protein disorder. Intrinsically disordered are proteins which lack a well-defined three-dimensional structure under physiological conditions. We predicted the fold group (ordered or disordered) of proteins in the network from their primary sequences. The network analysis indicated that protein disorder has a positive effect on the connectivity of proteins in the network, but do not fully explains the interactivity. CONCLUSIONS: The approach opens a perspective to study effects of biological properties of individual entities on the structure of biological networks.
Asunto(s)
Teorema de Bayes , Modelos Estadísticos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Biología Computacional , Bases de Datos de Proteínas , HumanosRESUMEN
Background: Diarrhoea is the commonest gastrointestinal symptom in patients with common variable immunodeficiency (CVID). Objective: The aim of this study was to describe the prevalence and clinical presentation of chronic and recurrent diarrhoea in the Royal-Free-Hospital (RFH) London CVID cohort, including symptoms, infections, level of inflammation, and microbial diversity. Methods: A cross-sectional study of adult CVID patients (139 out of 172 diagnosed with CVID completed the screening questionnaire). Those with diarrhoea ≥6 days/month had stool and blood samples analysed and completed the short Inflammatory Bowel Disease Questionnaire (sIBDQ). BMI, spleen-size, lymphocytes and gut-microbial diversity were compared. Due to logistical and clinical restraints, not all patients could be analysed on all measures. Results: 46/139 (33.1%) patients had current significant diarrhoea. In patients with past or present diarrhoea, BMI was lower (median 23.7 vs. 26, p = 0.005), malabsorption more common (57.97 vs. 35.71%, p = 0.011). CD4+ lymphocytes were higher in patients with diarrhoea (p = 0.028; n = 138), but CD4+ naïve lymphocytes were significantly higher in non-diarrhoea patients (p = 0.009, N = 28). Nine patients had confirmed or probable current gastrointestinal infections. Calprotectin was >60 µg/g in 13/29 with significant diarrhoea including 9 without infection. SIBDQ revealed a low median score of 4.74. Microbial alpha diversity was significantly lower in CVID patients compared to healthy household controls. There was no significant difference in alpha diversity in relation to antibiotic intake during the 6 weeks prior to providing samples. Conclusion: Patients with CVID and significant diarrhoea had infections, raised calprotectin, malabsorption, a lower BMI, an impaired quality of life (comparable to active IBD), and they differed from non-diarrhoea patients in their lymphocyte phenotyping. Furthermore, microbial diversity was altered. These findings strongly imply that there may be an inflammatory nature and a systemic predisposition to diarrhoea in CVID, which necessitates further investigation.