Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; 20(9): e202301089, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37596247

RESUMEN

Herein, new derivatives of α,ß-unsaturated ketones based on oleanolic acid (4 a-i) were designed, synthesized, characterized, and tested against human prostate cancer (PC3). According to the in vitro cytotoxic study, title compounds (4 a-i) showed significantly lower toxicity toward healthy cells (HUVEC) in comparison with the reference drug doxorubicin. The compounds with the lowest IC50 values on PC3 cell lines were 4 b (7.785 µM), 4 c (8.869 µM), and 4 e (8.765 µM). The results of the ADME calculations showed that the drug-likeness parameters were within the defined ranges according to Lipinski's and Jorgensen's rules. For the most potent compounds 4 b, 4 c, and 4 e, a molecular docking analysis using the induced fit docking (IFD) protocol was performed against three protein targets (PARP, PI3K, and mTOR). Based on the IFD scores, compound 4 b had the highest calculated affinity for PARP1, while compound 4 c had higher affinities for mTOR and PI3K. The MM-GBSA calculations showed that the most potent compounds had high binding affinities and formed stable complexes with the protein targets. Finally, a 50 ns molecular dynamics simulation was performed to study the behavior of protein target complexes under in silico physiological conditions.


Asunto(s)
Antineoplásicos , Ácido Oleanólico , Neoplasias de la Próstata , Humanos , Masculino , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Ácido Oleanólico/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular
2.
Toxicology ; 501: 153695, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048874

RESUMEN

In recent years, phthalates and their metabolites have been associated with metabolic diseases such as diabetes mellitus. To investigate the effects of phthalate metabolites exposure on insulin production and release, 1.1B4 pancreatic beta cells were treated with different concentrations (0.001-1000 µM) of monoethylhexyl phthalate (MEHP) and monobutyl phthalate (MBP). For such purpose, the 1.1B4 cells were evaluated for their viability, apoptosis rate, lysosomal membrane permeabilization (LMP), mitochondrial membrane potential (ΔΨm), oxidative stress, ER stress status, in addition to their secretory functions. MEHP, not MBP, exhibited a notable reduction in metabolic viability, particularly at higher concentrations (500 and 1000 µM) following 24-hour exposure. Similarly, both MEHP and MBP induced decreased metabolic viability at high concentrations after 48- and 72-hour exposure. Notably, neither MEHP nor MBP demonstrated a significant impact on apoptosis rates after 24-hour exposure, and MBP induced mild necrosis at 1000 µM concentration. Cell proliferation rates, indicated by PCNA expression, decreased with 10 and 1000 µM MEHP and 0.1 and 10 µM MBP exposures. LMP analysis revealed an increase in 1000 µM MBP group. Exposure to 0.001 µM of both MEHP and MBP significantly reduced cellular glutathione (GSH) levels. No significant change in intracellular reactive oxygen species (ROS) levels and ΔΨm was observed, but MBP-exposed cells exhibited elevated levels of lipid peroxidation. Functional assessments of pancreatic beta cells unveiled reduced insulin secretion at low glucose concentrations following exposure to both MEHP and MBP, with concurrent alterations in the expression levels of key proteins associated with beta cell function, including GLUT1, GCK, PDX1, and MafA. Moreover, MEHP and MBP exposures were associated with alterations in ER stress-related pathways, including JNK, GADD153, and NF-κB expression, as well as PPARα and PPARγ levels. In conclusion, this study provides comprehensive insights into the diverse impacts of MEHP and MBP on 1.1B4 pancreatic beta cells, emphasizing their potential role in modulating cell survival, metabolic function, and stress response pathways.


Asunto(s)
Dietilhexil Ftalato , Células Secretoras de Insulina , Ácidos Ftálicos , Dietilhexil Ftalato/toxicidad , Estrés del Retículo Endoplásmico
3.
Int J Biol Macromol ; 237: 123955, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906213

RESUMEN

Core-shell structured lipidic nanoparticles (LNPs) were developed using lecithin sodium acetate (Lec-OAc) ionic complex as a core unit and quaternized inulin (QIn) as the shell part. Inulin (In) was modified using glycidyl trimethyl ammonium chloride (GTMAC) as a positively charged shell part and used for coating the negatively surface charged Lec-OAc. The critical micelle concentration (CMC) of the core was determined as 1.047 × 10-4 M, which is expected to provide high stability in blood circulation as a drug-carrying compartment. The amounts of curcumin (Cur) and paclitaxel (Ptx) loaded to LNPs (CurPtx-LNPs), and quaternized inulin-coated LNPs (Cur-Ptx-QIn-LNPs) were optimized to obtain mono-dispersed particles with maximum payload. The total amount of 2.0 mg of the drug mixture (1 mg Cur and 1 mg Ptx) was the optimized quantity for QIn-LNPs and CurPtx-QIn-LNPs due to the favorable physicochemical properties determined by dynamic light scattering (DLS) studies. This inference was confirmed by differential scanning calorimeter (DSC), and Fourier-transform infrared (FT-IR). SEM and TEM images clearly revealed the spherical shapes of LNPs and QIn-LNPs, and QIn covered the LNPs completely. The cumulative release measurements of Cur and Ptx from CurPtx-QIn-LNPs, along with the kinetic studies, showed a significant decrease in the release period of drug molecules with the effect of the coating. At the same time, Korsmeyer-Peppas was the best diffusion-controlled release model. Coating of the LNPs with QIn increased the cell-internalization of NPs to the MDA-MB-231 breast cancer cell lines, resulting in a better toxicity profile than the empty LNPs.


Asunto(s)
Curcumina , Nanopartículas , Humanos , Lecitinas , Sistema de Administración de Fármacos con Nanopartículas , Inulina , Liberación de Fármacos , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Paclitaxel/química , Curcumina/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA