RESUMEN
Acute lymphoblastic leukemia (ALL) is the most frequent childhood cancer. For the last three decades, conventional cytogenetic and molecular approaches allowed the identification of genetic abnormalities having prognostic and therapeutic relevance. Although the current cure rate in pediatric B cell acute leukemia is approximately 90%, it remains one of the leading causes of mortality in childhood. Furthermore, in the contemporary protocols, chemotherapy intensity was raised to the maximal levels of tolerability, and further improvements in the outcome will depend on the characterization and reclassification of the disease, as well as on the development of new targeted drugs. The recent technological advances in genome-wide profiling techniques have allowed the exploration of the molecular heterogeneity of this disease, even though some potentially interesting biomarkers such as conjoined genes have not been deeply investigated yet. In the present study, we performed the transcriptome sequencing (RNA-seq) of 10 pediatric B cell precursor (BCP)-ALL cases with different risk (four standard- and six high-risk patients) enrolled in the Italian AIEOP-BFM ALL2000 protocol, in order to characterize the full spectrum of transcriptional events and to identify novel potential genetic mechanisms sustaining their different early response to therapy. Total RNA was extracted from primary leukemic blasts and RNA-seq was performed by Illumina technology. Bioinformatics analysis focused on fusion transcripts, originated from either inter- or intra-chromosomal structural rearrangements. Starting from a raw list of 9001 candidate events, by employing a custom-made bioinformatics pipeline, we obtained a short list of 245 candidate fusions. Among them, 10 events were compatible with chromosomal translocations. Strikingly, 235/245 events were intra-chromosomal fusions, 229 of which involved two contiguous or overlapping genes, resulting in the so-called conjoined genes (CGs). To explore the specificity of these events in leukemia, we performed an extensive bioinformatics meta-analysis and evaluated the presence of the fusions identified in our 10 BCP-ALL cohort in several other publicly available RNA-seq datasets, including leukemic, solid tumor and normal sample collections. Overall, 14/229 (6.1%) CGs were found to be exclusively expressed in leukemic cases, suggesting an association between CGs and leukemia. Moreover, CGs were found to be common events both in standard- and high-risk BCP-ALL patients and it might be suggestive of a novel potential transcriptional regulation mechanism active in leukemic cells.
Asunto(s)
Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína p53 Supresora de Tumor/genética , Adulto , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Tasa de SupervivenciaRESUMEN
Small supernumerary marker chromosomes (sSMCs) are structurally abnormal extra chromosomes that cannot be unambiguously identified or characterized by conventional banding techniques alone, and they are generally equal in size or smaller than chromosome 20 of the same metaphase spread. Small supernumerary ring chromosomes (sSRCs), a smaller class of marker chromosomes, comprise about 10% of the cases. For various reasons these marker chromosomes have been the most difficult to characterize; although specific syndromes have not yet been defined, 60% of cases are associated with an abnormal phenotype. The chromosomal material involved, the degree and tissutal distribution of mosaicism, and the possible presence of uniparental disomy, are the important factors determining whether or not the ring chromosome will give rise to symptoms. Using conventional and molecular cytogenetics approaches we identified a de novo chromosome 21 sSRC in a child with speech delay and mild intellectual disability. By using aCGH analysis and SNP arrays, we report the presence of two discontinuous regions of chromosome 21 and the paternal origin of the sSRC. A thorough neuropsychiatric evaluation is also provided. Only few other cases of complex discontinuous ring chromosomes have been described in detail.
Asunto(s)
Síndrome de Down/genética , Discapacidad Intelectual/patología , Trastornos Psicomotores/patología , Cromosomas en Anillo , Niño , Preescolar , Hibridación Genómica Comparativa , Biología Computacional , Citogenética , Humanos , Hibridación Fluorescente in Situ , Discapacidad Intelectual/genética , Trastornos Psicomotores/genéticaRESUMEN
Pediatric acute lymphoblastic leukemia (ALL) comprises genetically distinct subtypes. However, 25% of cases still lack defined genetic hallmarks. To identify genomic aberrancies in childhood ALL patients nonclassifiable by conventional methods, we performed a single nucleotide polymorphisms (SNP) array-based genomic analysis of leukemic cells from 29 cases. The vast majority of cases analyzed (19/24, 79%) showed genomic abnormalities; at least one of them affected either genes involved in cell cycle regulation or in B-cell development. The most relevant abnormalities were CDKN2A/9p21 deletions (7/24, 29%), ETV6 (TEL)/12p13 deletions (3/24, 12%), and intrachromosomal amplifications of chromosome 21 (iAMP21) (3/24, 12%). To identify variation in expression of genes directly or indirectly affected by recurrent genomic alterations, we integrated genomic and gene expression data generated by microarray analyses of the same samples. SMAD1 emerged as a down-regulated gene in CDKN2A homozygous deleted cases compared with nondeleted. The JAG1 gene, encoding the Jagged 1 ligand of the Notch receptor, was among a list of differentially expressed (up-regulated) genes in ETV6-deleted cases. Our findings demonstrate that integration of genomic analysis and gene expression profiling can identify genetic lesions undetected by routine methods and potential novel pathways involved in B-progenitor ALL pathogenesis.
Asunto(s)
Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Proteínas de Unión al Calcio/genética , Niño , Preescolar , Aberraciones Cromosómicas , Deleción Cromosómica , Cromosomas Humanos Par 21/genética , Femenino , Eliminación de Gen , Regulación Leucémica de la Expresión Génica , Genes p16 , Marcadores Genéticos , Humanos , Lactante , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1 , Masculino , Proteínas de la Membrana/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/clasificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Proteínas Serrate-Jagged , Proteína Smad1/genética , Disomía Uniparental , Proteína ETS de Variante de Translocación 6RESUMEN
Atypical chronic myeloid leukemia (aCML) is a BCR-ABL1-negative clonal disorder, which belongs to the myelodysplastic/myeloproliferative group. This disease is characterized by recurrent somatic mutations in SETBP1, ASXL1 and ETNK1 genes, as well as high genetic heterogeneity, thus posing a great therapeutic challenge. To provide a comprehensive genomic characterization of aCML we applied a high-throughput sequencing strategy to 43 aCML samples, including both whole-exome and RNA-sequencing data. Our dataset identifies ASXL1, SETBP1, and ETNK1 as the most frequently mutated genes with a total of 43.2%, 29.7 and 16.2%, respectively. We characterized the clonal architecture of 7 aCML patients by means of colony assays and targeted resequencing. The results indicate that ETNK1 variants occur early in the clonal evolution history of aCML, while SETBP1 mutations often represent a late event. The presence of actionable mutations conferred both ex vivo and in vivo sensitivity to specific inhibitors with evidence of strong in vitro synergism in case of multiple targeting. In one patient, a clinical response was obtained. Stratification based on RNA-sequencing identified two different populations in terms of overall survival, and differential gene expression analysis identified 38 significantly overexpressed genes in the worse outcome group. Three genes correctly classified patients for overall survival.
RESUMEN
The same FLT3-internal tandem duplication (ITD) positive clone was detected at diagnosis and relapse, but not at birth, in a child with M1 acute myeloid leukemia. Single nucleotide polymorphism arrays demonstrated that chromosome 13 acquired uniparental disomy, in association with del(9q), represented a progressive event in the course of the disease, and it was responsible for the homozygous FLT3-ITD at relapse.
Asunto(s)
Eliminación de Gen , Leucemia Mieloide Aguda/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Tirosina Quinasa 3 Similar a fms/genética , Niño , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Polimorfismo de Nucleótido Simple , Secuencias Repetidas en TándemRESUMEN
PURPOSE: Imatinib (Glivec) is a potent inhibitor of bcr/abl, an oncogenic fusion protein that causes chronic myelogenous leukemia (CML). alpha1 acid glycoprotein (AGP) binds to imatinib with high affinity and inhibits imatinib activity in vitro and in vivo in an animal model. A pharmacokinetics analysis of imatinib was undertaken in CML patients. EXPERIMENTAL DESIGN: Imatinib plasma concentrations were measured in 19 CML patients treated with imatinib (400 or 600 mg/day). Five patients received a concomitant short-term course of clindamycin (CLI). RESULTS: A positive correlation between AGP and imatinib plasma levels was observed. CLI administration decreased imatinib plasma concentrations, evaluated as area under the curve (AUC) and peak concentrations (C(max)). The effects of a bolus of CLI was studied in three patients on imatinib 23 h after the last imatinib dose. Within 5-10 min in three of three cases, CLI caused a decrease in imatinib plasma concentrations of 2.6-, 2.7-, and 4.7-fold, respectively. In vitro experiments using fresh blasts from CML patients showed that AGP, at concentrations observed in the patients, decreased imatinib intracellular concentrations up to 10 times and blocked imatinib activity. The incubation with CLI restored imatinib intracellular concentrations and biological activity. CONCLUSION: AGP exerts significant effects of the pharmacokinetics, plasma concentrations, and intracellular distribution of imatinib in CML patients; these data indicate that plasma imatinib levels represent unreliable indicators of the cellular concentrations of this molecule.
Asunto(s)
Antineoplásicos/farmacocinética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Orosomucoide/metabolismo , Piperazinas/farmacocinética , Pirimidinas/farmacocinética , Animales , Antineoplásicos/sangre , Antineoplásicos/uso terapéutico , Área Bajo la Curva , Benzamidas , Crisis Blástica , División Celular , Femenino , Humanos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/sangre , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Ratones Desnudos , Piperazinas/sangre , Piperazinas/uso terapéutico , Unión Proteica , Pirimidinas/sangre , Pirimidinas/uso terapéutico , Timidina/metabolismo , Trasplante Heterólogo , Células Tumorales CultivadasRESUMEN
CD56 is expressed in 15-20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56(+) monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MSTâ=â28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56(+) AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML.
Asunto(s)
Antígeno CD56 , Proteínas de Ciclo Celular/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Neoplasias Experimentales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirazoles/farmacología , Quinazolinas/farmacología , Adulto , Animales , Proteínas de Ciclo Celular/metabolismo , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1RESUMEN
Acute lymphoblastic leukemia (ALL) in infants is characterized by a high frequency of MLL gene rearrangements. By contrast, the t(12;21) ETV6-RUNX1 fusion gene is typically detected in children older than 2 years. In a series of Brazilian infant leukemia cases, however, four younger cases harbored ETV6-RUNX1, at ages 2, 3, 5, and 7 months. This finding could represent a unique model for delineating the additional genomic hits required to accelerate the emergence of a frank leukemia in these t(12;21)-positive cases. We applied a whole-genome copy number analysis with single-nucleotide polymorphism (SNP) arrays, comparing t(12;21) infants with older pediatric age groups. Recurrent deletions, including 9p21.3 (CDKN2A, CKDN2B, and MTAP), 11p13 (CD44), 12p13.2 (ETV6), and patient-specific abnormalities were identified. Although infant cases with t(12;21) did not display specific genetic abnormalities explaining the short latency to overt leukemia, the frequency of copy number abnormalities increased proportionally with age. This novel SNP array analysis in an extremely rare series of cases opens new ideas about the etiology of ETV6-RUNX1-positive ALL.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Fusión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Niño , Preescolar , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Polimorfismo de Nucleótido SimpleRESUMEN
Imatinib mesylate (imatinib) inhibits Bcr/Abl, an oncogenic fusion protein. The in vitro effects of imatinib on BCR/ABL+ leukemic cells include inhibition of Bcr/Abl tyrosine phosphorylation, block of proliferation, and induction of apoptosis. The in vivo effects of imatinib were evaluated in 12 CML (chronic myeloid leukemia) patients in blast crisis or accelerated phase who were treated with imatinib. Treatment caused a decrease in spontaneous proliferation of leukemic cells in 10 of 12 evaluable patients and the development of apoptosis in 9 of 11 cases. Imatinib also caused an inhibition of Bcr/Abl autophosphorylation; however, the degree of inhibition obtained in vivo was substantially lower than that achieved in vitro with similar concentrations of imatinib. In seven patients cells could be evaluated at relapse: spontaneous proliferation was no longer inhibited and Bcr/Abl phosphorylation was comparable or superior to that present at the beginning of treatment, before imatinib administration. Plasma imatinib concentrations were not reduced. Leukemic cells obtained at relapse maintained in vitro sensitivity (Bcr/Abl autophosphorylation and proliferation inhibition) to imatinib concentration measured in vivo (3 microM or higher), although a partial resistance to the antiproliferative effects of imatinib was present at low (0.01-0.3 microM) concentrations. In four patients, addition of erythromycin to blood samples obtained at relapse restored imatinib sensitivity in terms of phosphorylation inhibition, indicating that the majority of plasma imatinib was not available to cells and probably bound to alpha1 acid glycoprotein. These data suggest that measurements of Bcr/Abl kinase activity in peripheral blood samples may represent a more reliable indicator of active concentrations than the measurement of imatinib plasma levels.