Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO J ; 40(24): e105862, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34786738

RESUMEN

The onset of random X chromosome inactivation in mouse requires the switch from a symmetric to an asymmetric state, where the identities of the future inactive and active X chromosomes are assigned. This process is known as X chromosome choice. Here, we show that RIF1 and KAP1 are two fundamental factors for the definition of this transcriptional asymmetry. We found that at the onset of differentiation of mouse embryonic stem cells (mESCs), biallelic up-regulation of the long non-coding RNA Tsix weakens the symmetric association of RIF1 with the Xist promoter. The Xist allele maintaining the association with RIF1 goes on to up-regulate Xist RNA expression in a RIF1-dependent manner. Conversely, the promoter that loses RIF1 gains binding of KAP1, and KAP1 is required for the increase in Tsix levels preceding the choice. We propose that the mutual exclusion of Tsix and RIF1, and of RIF1 and KAP1, at the Xist promoters establish a self-sustaining loop that transforms an initially stochastic event into a stably inherited asymmetric X-chromosome state.


Asunto(s)
Células Madre Embrionarias de Ratones/citología , ARN Largo no Codificante/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Diferenciación Celular , Línea Celular , Femenino , Ratones , Regiones Promotoras Genéticas , Procesos Estocásticos , Regulación hacia Arriba , Inactivación del Cromosoma X
2.
Adv Exp Med Biol ; 1042: 259-272, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29357062

RESUMEN

Eukaryotic genomes are replicated starting from multiple origins of replication. Their usage is tightly regulated, and not all the potential origins are activated during a single cell cycle. In addition, the ones that are activated are activated in a sequential order. Why don't origins of replication normally all fire together? Is this important? And if so, why? Would any order of firing do, or does the specific sequence matter? How is this process regulated? These questions concern all eukaryotes but have proven extremely hard to address because replication timing is a process intricately connected with multiple aspects of nuclear function.


Asunto(s)
Replicación del ADN/fisiología , Genoma/genética , Mamíferos/genética , Proteínas de Unión a Telómeros/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , División Celular/genética , Momento de Replicación del ADN/genética , Inestabilidad Genómica/fisiología , Humanos
3.
EMBO J ; 31(18): 3678-90, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22850673

RESUMEN

The eukaryotic genome is replicated according to a specific spatio-temporal programme. However, little is known about both its molecular control and biological significance. Here, we identify mouse Rif1 as a key player in the regulation of DNA replication timing. We show that Rif1 deficiency in primary cells results in an unprecedented global alteration of the temporal order of replication. This effect takes place already in the first S-phase after Rif1 deletion and is neither accompanied by alterations in the transcriptional landscape nor by major changes in the biochemical identity of constitutive heterochromatin. In addition, Rif1 deficiency leads to both defective G1/S transition and chromatin re-organization after DNA replication. Together, these data offer a novel insight into the global regulation and biological significance of the replication-timing programme in mammalian cells.


Asunto(s)
Replicación del ADN , Regulación de la Expresión Génica , Proteínas de Unión a Telómeros/genética , Alelos , Animales , Ciclo Celular , Femenino , Fase G1 , Genoma , Genotipo , Heterocromatina/química , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal/métodos , Matriz Nuclear/metabolismo , Fase S , Transcripción Genética
4.
Dev Cell ; 4(5): 727-39, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12737807

RESUMEN

Disjunction of maternal and paternal centromeres during meiosis I requires crossing over between homologous chromatids, which creates chiasmata that hold homologs together. It also depends on a mechanism ensuring that maternal and paternal sister kinetochore pairs attach to oppositely oriented microtubules. Proteolytic cleavage of cohesin's Rec8 subunit by separase destroys cohesion between sister chromatid arms at anaphase I and thereby resolves chiasmata. The Spo12 and Slk19 proteins have been implicated in regulating meiosis I kinetochore orientation and/or in preventing cleavage of Rec8 at centromeres. We show here that the role of these proteins is instead to promote nucleolar segregation, including release of the Cdc14 phosphatase required for Cdk1 inactivation and disassembly of the anaphase I spindle. Separase is also required but surprisingly not its protease activity. It has two mechanistically different roles during meiosis I. Loss of the protease-independent function alone results in a second meiotic division occurring on anaphase I spindles in spo12delta and slk19delta mutants.


Asunto(s)
Anafase , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Endopeptidasas , Proteínas Fúngicas/metabolismo , Meiosis , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclina B , Ciclinas/metabolismo , Regulación hacia Abajo , Proteínas Fúngicas/genética , Hibridación Fluorescente in Situ , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Separasa , Factores de Tiempo
5.
Sci Rep ; 7(1): 2119, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522851

RESUMEN

Rif1 is a conserved protein that plays essential roles in orchestrating DNA replication timing, controlling nuclear architecture, telomere length and DNA repair. However, the relationship between these different roles, as well as the molecular basis of Rif1 function is still unclear. The association of Rif1 with insoluble nuclear lamina has thus far hampered exhaustive characterization of the associated protein complexes. We devised a protocol that overcomes this problem, and were thus able to discover a number of novel Rif1 interactors, involved in chromatin metabolism and phosphorylation. Among them, we focus here on PP1. Data from different systems have suggested that Rif1-PP1 interaction is conserved and has important biological roles. Using mutagenesis, NMR, isothermal calorimetry and surface plasmon resonance we demonstrate that Rif1 is a high-affinity PP1 adaptor, able to out-compete the well-established PP1-inhibitor I2 in vitro. Our conclusions have important implications for understanding Rif1 diverse roles and the relationship between the biological processes controlled by Rif1.


Asunto(s)
Proteínas de Unión a Telómeros/química , Animales , Sitios de Unión , Línea Celular , Ratones , Mutación Puntual , Unión Proteica , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
6.
J Cell Biol ; 187(3): 385-98, 2009 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-19948482

RESUMEN

Rif1, originally recognized for its role at telomeres in budding yeast, has been implicated in a wide variety of cellular processes in mammals, including pluripotency of stem cells, response to double-strand breaks, and breast cancer development. As the molecular function of Rif1 is not known, we examined the consequences of Rif1 deficiency in mouse cells. Rif1 deficiency leads to failure in embryonic development, and conditional deletion of Rif1 from mouse embryo fibroblasts affects S-phase progression, rendering cells hypersensitive to replication poisons. Rif1 deficiency does not alter the activation of the DNA replication checkpoint but rather affects the execution of repair. RNA interference to human Rif1 decreases the efficiency of homology-directed repair (HDR), and Rif1 deficiency results in aberrant aggregates of the HDR factor Rad51. Consistent with a role in S-phase progression, Rif1 accumulates at stalled replication forks, preferentially around pericentromeric heterochromatin. Collectively, these findings reveal a function for Rif1 in the repair of stalled forks by facilitating HDR.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas de Unión a Telómeros/fisiología , Animales , Daño del ADN , Desarrollo Embrionario/genética , Heterocromatina , Humanos , Ratones , Interferencia de ARN , Recombinasa Rad51/metabolismo , Fase S/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
7.
Genes Dev ; 18(17): 2108-19, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15342490

RESUMEN

We report on the function of the human ortholog of Saccharomyces cerevisiae Rif1 (Rap1-interacting factor 1). Yeast Rif1 associates with telomeres and regulates their length. In contrast, human Rif1 did not accumulate at functional telomeres, but localized to dysfunctional telomeres and to telomeric DNA clusters in ALT cells, a pattern of telomere association typical of DNA-damage-response factors. After induction of double-strand breaks (DSBs), Rif1 formed foci that colocalized with other DNA-damage-response factors. This response was strictly dependent on ATM (ataxia telangiectasia mutated) and 53BP1, but not affected by diminished function of ATR (ATM- and Rad3-related kinase), BRCA1, Chk2, Nbs1, and Mre11. Rif1 inhibition resulted in radiosensitivity and a defect in the intra-S-phase checkpoint. The S-phase checkpoint phenotype was independent of Nbs1 status, arguing that Rif1 and Nbs1 act in different pathways to inhibit DNA replication after DNA damage. These data reveal that human Rif1 contributes to the ATM-mediated protection against DNA damage and point to a remarkable difference in the primary function of this protein in yeast and mammals.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Proteínas de Unión a Telómeros/metabolismo , Telómero/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Proteínas Portadoras , Proteínas de Ciclo Celular , Células Cultivadas , Daño del ADN/fisiología , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/fisiología , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Fosfoproteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Unión a Telómeros/fisiología , Transfección , Proteínas Supresoras de Tumor , Proteína 1 de Unión al Supresor Tumoral P53 , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA