Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(1): e1010200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025968

RESUMEN

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.


Asunto(s)
Quimiocina CCL17/inmunología , Quimiocina CCL22/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Neoplasias/inmunología , Neoplasias/virología , Linfocitos T Reguladores/inmunología , Animales , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Xenoinjertos , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/virología , Humanos , Ratones , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/virología
2.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982351

RESUMEN

Damage-associated molecular patterns (DAMPs) are endogenous molecules released from the necrotic cells dying after exposure to various stressors. After binding to their receptors, they can stimulate various signaling pathways in target cells. DAMPs are especially abundant in the microenvironment of malignant tumors and are suspected to influence the behavior of malignant and stromal cells in multiple ways often resulting in promotion of cell proliferation, migration, invasion, and metastasis, as well as increased immune evasion. This review will start with a reminder of the main features of cell necrosis, which will be compared to other forms of cell death. Then we will summarize the various methods used to assess tumor necrosis in clinical practice including medical imaging, histopathological examination, and/or biological assays. We will also consider the importance of necrosis as a prognostic factor. Then the focus will be on the DAMPs and their role in the tumor microenvironment (TME). We will address not only their interactions with the malignant cells, frequently leading to cancer progression, but also with the immune cells and their contribution to immunosuppression. Finally, we will emphasize the role of DAMPs released by necrotic cells in the activation of Toll-like receptors (TLRs) and the possible contributions of TLRs to tumor development. This last point is very important for the future of cancer therapeutics since there are attempts to use TLR artificial ligands for cancer therapeutics.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Necrosis , Receptores Toll-Like/metabolismo , Transducción de Señal
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894949

RESUMEN

Tumor necrosis is a recurrent characteristic of head and neck squamous cell carcinomas (HNSCCs). There is a need for more investigations on the influence of biomolecules released by these necrotic foci in the HNSCC tumor microenvironment. It is suspected that a fraction of the biomolecules released by necrotic cells are damage-associated molecular patterns (DAMPs), which are known to be natural endogenous ligands of Toll-like receptors (TLRs), including, among others, proteins and nucleic acids. However, there has been no direct demonstration that biomolecules released by HNSCC necrotic cells can activate TLRs. Our aim was to investigate whether some of these molecules could behave as agonists of the TLR3, either in vitro or in vivo. We chose a functional approach based on reporter cell exhibiting artificial TLR3 expression and downstream release of secreted alkaline phosphatase. The production of biomolecules activating TLR3 was first investigated in vitro using three HNSCC cell lines subjected to various pronecrotic stimuli (external irradiation, serum starvation, hypoxia and oxidative stress). TLR3 agonists were also investigated in necrotic tumor fluids from five oral cancer patients and three mouse tumor grafts. The release of biomolecules activating TLR3 was demonstrated for all three HNSCC cell lines. External irradiation was the most consistently efficient stimulus, and corresponding TLR3 agonists were conveyed in extracellular vesicles. TLR3-stimulating activity was detected in the fluids from all five patients and three mouse tumor grafts. In most cases, this activity was greatly reduced by RNAse pretreatment or TLR3 blocking antibodies. Our data indicate that TLR3 agonists are consistently present in necrotic fluids from HNSCC cells and mainly made of dsRNA fragments. These endogenous agonists may induce TLR3, which might lead to a protumorigenic effect. Regarding methodological aspects, our study demonstrates that direct investigations-including functional testing-can be performed on necrotic fluids from patient tumors.


Asunto(s)
Neoplasias de Cabeza y Cuello , Receptor Toll-Like 3 , Animales , Humanos , Ratones , Necrosis/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 9 , Receptores Toll-Like , Microambiente Tumoral
4.
Cancer Immunol Immunother ; 71(1): 13-24, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33993319

RESUMEN

Around 30-50% of classical Hodgkin lymphoma (cHL) cases in immunocompetent individuals from industrialized countries are associated with the B-lymphotropic Epstein-Barr virus (EBV). Although natural killer (NK) cells exhibit anti-viral and anti-tumoral functions, virtually nothing is known about quantitative and qualitative differences in NK cells in patients with EBV+ cHL vs. EBV- cHL. Here, we prospectively investigated 36 cHL patients without known immune suppression or overt immunodeficiency at diagnosis. All 10 EBV+ cHL patients and 25 out 26 EBV- cHL were seropositive for EBV antibodies, and EBV+ cHL patients presented with higher plasma EBV DNA levels compared to EBV- cHL patients. We show that the CD56dim CD16+ NK cell subset was decreased in frequency in EBV+ cHL patients compared to EBV- cHL patients. This quantitative deficiency translates into an impaired CD56dim NK cell mediated degranulation toward rituximab-coated HLA class 1 negative lymphoblastoid cells in EBV+ compared to EBV- cHL patients. We finally observed a trend to a decrease in the rituximab-associated degranulation and ADCC of in vitro expanded NK cells of EBV+ cHL compared to healthy controls. Our findings may impact on the design of adjunctive treatment targeting antibody-dependent cellular cytotoxicity in EBV+ cHL.


Asunto(s)
Anticuerpos/inmunología , Antígeno CD56/biosíntesis , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/terapia , Receptores de IgG/biosíntesis , Adulto , Anciano , Antineoplásicos/farmacología , Infecciones por Virus de Epstein-Barr/complicaciones , Femenino , Proteínas Ligadas a GPI/biosíntesis , Herpesvirus Humano 4/metabolismo , Enfermedad de Hodgkin/complicaciones , Humanos , Inmunoterapia , Técnicas In Vitro , Células Asesinas Naturales/metabolismo , Leucocitos Mononucleares/citología , Linfocitos/metabolismo , Proteína 1 de la Membrana Asociada a los Lisosomas/biosíntesis , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Rituximab/farmacología
5.
Cancer Immunol Immunother ; 70(2): 323-336, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32737537

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a highly malignant epithelial cancer linked to Epstein-Barr virus (EBV) infection. Tumors are characterized by a lymphomononuclear infiltrate and the number of natural killer (NK) cells in tumors appears to be of prognostic significance. Standard treatment for NPC in adolescents and young adults consists of induction chemotherapy followed by radiochemotherapy. Though survival rates are above 80%, the majority of patients suffer from long-term side-effects, mainly related to radiotherapy. The addition of immunotherapy to induction chemotherapy could improve tumor response. METHODS: We have investigated the killing of NPC cells by NK cells in the context of chemotherapy, using a panel of three nasopharyngeal carcinoma cell lines and a patient-derived xenograft. Cytotoxicity was measured using the calcein-release assay, while the contribution of different checkpoints and signaling pathways to killing was studied by siRNA-mediated gene silencing and chemical inhibitors. RESULTS: Chemotherapeutics cisplatin, 5-fluorouracil and gemcitabine sensitized NPC cells to killing by NK cells. Chemotherapeutics led to upregulation of PD-1 in NK cells and PD-L1 in NPC cells via NF-κB. Inhibition of the PD-L1/PD-1 checkpoint by an anti-PD-1 antibody or siRNA increased NK-cell cytotoxicity towards NPC cells. CONCLUSION: The addition of an anti-PD-1 antibody to chemotherapy in patients with NPC could increase the efficacy of induction chemotherapy. If confirmed in a clinical trial, more efficient induction therapy could allow the dose of radiotherapy to be reduced and thereby diminish severe late effects of such therapy.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Carcinoma Nasofaríngeo/genética , Receptor de Muerte Celular Programada 1/uso terapéutico , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Receptor de Muerte Celular Programada 1/metabolismo , Transfección , Regulación hacia Arriba
6.
Proc Natl Acad Sci U S A ; 114(36): 9683-9688, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28831010

RESUMEN

Nasopharyngeal carcinoma (NPC) most frequently occurs in southern China and southeast Asia. Epidemiology studies link NPC to genetic predisposition, Epstein-Barr virus (EBV) infection, and environmental factors. Genetic studies indicate that mutations in chromatin-modifying enzymes are the most frequent genetic alterations in NPC. Here, we used H3K27ac chromatin immune precipitation followed by deep sequencing (ChIP-seq) to define the NPC epigenome in primary NPC biopsies, NPC xenografts, and an NPC cell line, and compared them to immortalized normal nasopharyngeal or oral epithelial cells. We identified NPC-specific enhancers and found these enhancers were enriched with nuclear factor κB (NF-κB), IFN-responsive factor 1 (IRF1) and IRF2, and ETS family members ETS1 motifs. Normal cell-specific enhancers were enriched with basic leucine zipper family members and TP53 motifs. NPC super-enhancers with extraordinarily broad and high H3K27ac signals were also identified, and they were linked to genes important for oncogenesis including ETV6. ETV6 was also highly expressed in NPC biopsies by immunohistochemistry. High ETV6 expression correlated with a poor prognosis. Furthermore, we defined the EBV episome epigenetic landscapes in primary NPC tissue.


Asunto(s)
Carcinoma/genética , Elementos de Facilitación Genéticos , Neoplasias Nasofaríngeas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Adolescente , Adulto , Anciano , Animales , Azepinas/farmacología , Carcinoma/etiología , Carcinoma/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Elementos de Facilitación Genéticos/efectos de los fármacos , Epigénesis Genética , Infecciones por Virus de Epstein-Barr/complicaciones , Femenino , Genoma Viral , Xenoinjertos , Secuenciación de Nucleótidos de Alto Rendimiento , Código de Histonas/genética , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/etiología , Neoplasias Nasofaríngeas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Pronóstico , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Adulto Joven , Proteína ETS de Variante de Translocación 6
7.
Cancer Immunol Immunother ; 68(8): 1317-1329, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31312900

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an EBV-associated neoplasm occurring endemically in Southeast Asia and sporadically all over the world. In children and adolescents, high cure rates have been obtained using chemotherapy, radiochemotherapy and maintenance therapy with interferon beta (IFNß). The mechanism by which IFNß contributes to a low systemic relapse rate has not yet been fully revealed. PATIENTS AND METHODS: NK cells and serum samples from two patients with NPC were analyzed before and at different time points during IFNß therapy, for assessment of TRAIL expression and NK cell cytotoxicity. Cytotoxicity was measured using the calcein release assay and the contribution of different death effector pathways was analyzed using specific inhibitors. RESULTS: Treatment with IFNß induced TRAIL expression on patients' NK cells and increased their cytotoxicity against NPC targets in vitro. NK cell-mediated cytotoxicity was predominately mediated via TRAIL. IFNß also induced the production of soluble TRAIL (sTRAIL) by NK cells and its release upon contact with NPC cells. IFNß treatment increased serum levels of sTRAIL in patients. Moreover, sTRAIL concentrated from patients' serum samples induced apoptosis ex vivo in NPC cells from a patient-derived xenograft. CONCLUSION: Increased cytotoxicity of NK cells against NPC cells and increased serum levels of biologically active TRAIL in patients treated with IFNß could be a means to eliminate micrometastatic disease and explain the low systemic relapse rate in this patient group.


Asunto(s)
Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/fisiología , Inmunoterapia/métodos , Interferón beta/uso terapéutico , Células Asesinas Naturales/inmunología , Carcinoma Nasofaríngeo/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Adolescente , Animales , Apoptosis , Línea Celular Tumoral , Niño , Citotoxicidad Inmunológica , Femenino , Humanos , Ratones , Ratones Desnudos , Carcinoma Nasofaríngeo/inmunología , Recurrencia Local de Neoplasia , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS Pathog ; 13(7): e1006503, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28732079

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1ß, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1ß, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC.


Asunto(s)
Carcinoma/fisiopatología , Infecciones por Virus de Epstein-Barr/fisiopatología , Herpesvirus Humano 4/metabolismo , Células Supresoras de Origen Mieloide/citología , Neoplasias Nasofaríngeas/fisiopatología , Proteínas de la Matriz Viral/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/virología , Línea Celular Tumoral , Proliferación Celular , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Regulación Neoplásica de la Expresión Génica , Glucólisis , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/virología , Transducción de Señal , Proteínas de la Matriz Viral/genética
9.
Protein Expr Purif ; 162: 44-50, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31145974

RESUMEN

BALF0/1 is a putative Epstein-Barr virus (EBV) protein that has been described as a modulator of apoptosis. So far, the lack of specific immunological reagents impaired the detection of native BALF0/1 in EBV-infected cells. This study describes the expression and purification of a truncated form of BALF0/1 (tBALF0) using a heterologous bacterial expression system. tBALF0 was further used as an antigen in an indirect Enzyme-linked Immunosorbent Assay (ELISA) that unraveled the presence of low titer IgGs to BALF0/1 during primary (10.0%) and past (13.3%) EBV infection. Conversely high-titer IgGs to BALF0/1 were detected in 33.3% of nasopharyngeal carcinoma (NPC) patients suggesting that BALF0/1 and/or humoral response against it may contribute to NPC pathogenesis.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Virus de Epstein-Barr/sangre , Herpesvirus Humano 4/inmunología , Inmunoglobulina G/sangre , Carcinoma Nasofaríngeo/sangre , Proteínas Virales/inmunología , Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Humanos , Inmunidad Humoral , Inmunoglobulina G/inmunología , Carcinoma Nasofaríngeo/virología , Proteínas Virales/genética
10.
J Pathol ; 244(4): 394-407, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29230817

RESUMEN

Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , MicroARNs/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , ARN Viral/genética , Regiones no Traducidas 3' , Animales , Proteínas de la Ataxia Telangiectasia Mutada/biosíntesis , Sitios de Unión , Línea Celular Tumoral , Daño del ADN , Represión Enzimática , Infecciones por Virus de Epstein-Barr/diagnóstico , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Carcinoma Nasofaríngeo/enzimología , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/enzimología , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/virología , Transcriptoma , Latencia del Virus
11.
Lab Invest ; 98(8): 1093-1104, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29769697

RESUMEN

Epstein-Barr virus (EBV) infects more than 90% of the adult human population. Undifferentiated nasopharyngeal carcinoma (NPC) is common in Southeast Asia, with a particularly high incidence among southern Chinese. The EBV genome can be detected in practically all cancer cells in undifferentiated NPC. The role of EBV in pathogenesis of undifferentiated NPC remains elusive. NPC cell lines are known to be difficult to establish in culture. The EBV+ve NPC cell lines, even if established in culture, rapidly lost their EBV episomes upon prolonged propagation. At present, the C666-1 NPC cell line, which is defective in lytic EBV reactivation, is the only EBV+ve NPC cell line available for NPC and EBV research. The need to establish new and representative NPC cell lines is eminent for NPC and EBV research. In this study, we report the use of the Rho-associated kinase inhibitor (Y-27632) has facilitated the establishment of a new EBV+ve NPC cell line from an earlier established NPC xenograft, C17. The C17 cell line was tumorigenic in immune-deficient mice (NOD/SCID). It retained the EBV episomes and could be induced to undergo productive lytic reactivation of EBV to generate infectious virus particles. The C17 cell line represents a new investigative tool for NPC and EBV studies. The ability of C17 to undergo lytic reactivation is unique and opens up the opportunity to examine regulation of latent and lytic infection of EBV and their contributions to NPC pathogenesis.


Asunto(s)
Infecciones por Virus de Epstein-Barr/patología , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Activación Viral , Animales , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/virología , Genoma Viral/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Humanos , Cariotipificación , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/virología , Trasplante Heterólogo , Carga Tumoral
12.
Mol Carcinog ; 56(4): 1214-1226, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27805282

RESUMEN

Toll-like receptor 3 (TLR3) has a dual role in cancer; its activation can trigger apoptosis as well as stimulate cancer cell survival, proliferation, and progression. We have shown here that TLR3 activation can induce metabolic reprogramming in a pharyngeal cancer cell line, leading to increased aerobic glycolysis, cell migration, elevated levels of reactive oxidative species (ROS), and decreased anti-oxidative response. Key proteins in these signaling pathways are heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), pyruvate kinase M2 (PKM2), and CD44 variants, which were over-expressed after TLR3 stimulation. TLR3 activation also induced upregulation of different genes involved in cancer progression (VEGF, MMP9, uPAR) and enzymes involved in glycolytic pathway. Most of the observed effects were Myc-dependent; however, some of them were also connected with MAPK and HIF signaling pathways. Since TLR3 agonists are being investigated as potential novel cancer therapy adjuvants and apoptosis inducers, alone or in combination with other therapeutic options, data presented here suggest extreme caution before their introduction into clinical practice. The fact that TLR3 ligands [poly(I:C) and poly(A:U)] can also aid cancer survival and progression, through induction of metabolic reprogramming, emphasizes the need to investigate this particular topic. Our data suggest that the combination of TLR3 ligands with Myc or MAPK inhibitors may be a way to neutralize their undesirable effects while enhancing their anti-tumor effect. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Faríngeas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Receptor Toll-Like 3/metabolismo , Línea Celular Tumoral , Movimiento Celular , Glucólisis , Humanos , Estrés Oxidativo , Neoplasias Faríngeas/patología , Faringe/metabolismo , Faringe/patología , Poli I-C/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
J Biol Chem ; 290(27): 16797-811, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-25947381

RESUMEN

Galectin-9 (gal-9) is a multifunctional ß-galactoside-binding lectin, frequently released in the extracellular medium, where it acts as a pleiotropic immune modulator. Despite its overall immunosuppressive effects, a recent study has reported bimodal action of gal-9 on human resting blood T cells with apoptosis occurring in the majority of them, followed by a wave of activation and expansion of Th1 cells in the surviving population. Our knowledge of the signaling events triggered by exogenous gal-9 in T cells remains limited. One of these events is cytosolic calcium (Ca(2+)) release reported in some murine and human T cells. The aim of this study was to investigate the contribution of Ca(2+) mobilization to apoptotic and nonapoptotic effects of exogenous gal-9 in human T cells. We found that the T cell receptor (TCR)-CD3 complex and the Lck kinase were required for Ca(2+) mobilization but not for apoptosis induction in Jurkat cells. These data were confirmed in human CD4(+) T cells from peripheral blood as follows: a specific Lck chemical inhibitor abrogated Ca(2+) mobilization but not apoptosis induction. Moreover, Lck activity was also required for the production of Th1-type cytokines, i.e. interleukin-2 and interferon-γ, which resulted from gal-9 stimulation in peripheral CD4(+) T cells. These findings indicate that gal-9 acts on T cells by two distinct pathways as follows: one mimicking antigen-specific activation of the TCR with a mandatory contribution of proximal elements of the TCR complex, especially Lck, and another resulting in apoptosis that is independent of this complex.


Asunto(s)
Apoptosis , Complejo CD3/metabolismo , Galectinas/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Complejo CD3/genética , Calcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Galectinas/genética , Humanos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citología
14.
Thorax ; 70(6): 537-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855608

RESUMEN

BACKGROUND: Sarcoidosis is a rare lung disease in children. The aim of the present study was to provide update information on disease presentation and progression, patient management and prognosis factors in a cohort of children with lung sarcoidosis. METHODS: With the network of the French Reference Centre for Rare Lung Diseases (RespiRare), we collected information on a large cohort of paediatric thoracic sarcoidosis to provide information on disease presentation, management and outcome. RESULTS: Forty-one patients were included with a median age at diagnosis of 11.8  years (1.1-15.8), mostly from Afro-Caribbean and Sub-Saharan origin. At diagnosis, 85% presented with a multi-organic disease, and no major differences were found regarding disease severity between the patients diagnosed before or after 10 years old. Corticosteroids were the most used treatment, with more intravenous pulses in the youngest patients. The 18-month outcome showed that patients diagnosed before 10 years old were more likely to recover (50% vs 29%), and presented fewer relapses (29% vs 58%). At 4-5 years of follow-up, relapses were mostly observed for patients diagnosed after 10 years old. DISCUSSION: In the included children, mostly of Afro-Caribbean and Sub-Saharan origin, sarcoidosis seems severe, with multi-organic involvement and foreground general symptoms. Common prognosis factors are not suitable in paediatric patients, and a young age at diagnosis does not seem to be associated with a poorer prognosis. The study is ongoing to provide further information on the very-long-term follow-up of paediatric sarcoidosis.


Asunto(s)
Población Negra , Glucocorticoides/uso terapéutico , Sarcoidosis Pulmonar/tratamiento farmacológico , Sarcoidosis Pulmonar/etnología , Adolescente , África del Sur del Sahara/etnología , Población Negra/estadística & datos numéricos , Región del Caribe/etnología , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Francia/epidemiología , Humanos , Lactante , Infusiones Intravenosas , Masculino , Enfermedades Raras , Recurrencia , Sarcoidosis Pulmonar/diagnóstico , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
15.
Mol Cancer ; 13: 184, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25098679

RESUMEN

BACKGROUND: As a distinctive type of head and neck cancers, nasopharyngeal carcinoma (NPC) is genesis from the clonal Epstein-Barr virus (EBV)-infected nasopharyngeal epithelial cells accumulated with multiple genetic lesions. Among the recurrent genetic alterations defined, loss of 9p21.3 is the most frequent early event in the tumorigenesis of EBV-associated NPC. In addition to the reported CDKN2A/p16, herein, we elucidated the role of a miRNA, miR-31 within this 9p21.3 region as NPC-associated tumor suppressor. METHODS: The expression and promoter methylation of miR-31 were assessed in a panel of NPC tumor lines and primary tumors. Its in vitro and in vivo tumor suppression function was investigated through the ectopic expression of miR-31 in NPC cells. We also determined the miR-31 targeted genes and its involvement in the growth in NPC. RESULTS: Downregulation of miR-31 expression was detected in almost all NPC cell line, patient-derived xenografts (PDXs) and primary tumors. Both homozygous deletion and promoter hypermethylation were shown to be major mechanisms for miR-31 silencing in this cancer. Strikingly, loss of miR-31 was also obviously observed in the dysplastic lesions of nasopharynx. Restoration of miR-31 in C666-1 cells inhibited the cell proliferation, colony-forming and migratory capacities. Dramatic reduction of in vitro anchorage-independent growth and in vivo tumorigenic potential were demonstrated in the stable clones expressing miR-31. Furthermore, we proved that miR-31 suppressed the NPC cell growth via targeting FIH1 and MCM2. CONCLUSIONS: The findings provide strong evidence to support miR-31 as a new NPC-associated tumor suppressor on 9p21.3 region. The inactivation of miR-31 may contribute to the early development of NPC.


Asunto(s)
Carcinogénesis/patología , Herpesvirus Humano 4/fisiología , MicroARNs/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virología , Carcinogénesis/genética , Carcinoma , Movimiento Celular/genética , Proliferación Celular , Supervivencia Celular/genética , Hibridación Genómica Comparativa , Metilación de ADN/genética , Regulación hacia Abajo/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Homocigoto , Humanos , MicroARNs/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Oxigenasas de Función Mixta/metabolismo , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Fosforilación , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
16.
J Pathol ; 231(3): 311-22, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23868181

RESUMEN

As a distinct type of head and neck cancer, non-keratinizing nasopharyngeal carcinoma (NPC) is closely associated with EBV infection and massive lymphoid infiltration. The unique histological features suggest that local inflammation plays an important role in NPC tumourigenesis. We comprehensively characterized NF-κB signalling, a key inflammatory pathway which might contribute to the tumourigenesis of this EBV-associated cancer. By EMSA, western blotting, and immunohistochemical staining, constitutive activation of distinct NF-κB complexes, either p50/p50/Bcl3 or p50/RelB, was found in almost all EBV-positive NPC tumours. siRNA or chemical inhibition of NF-κB signalling significantly inhibited the growth of EBV-positive NPC cells C666-1. Gene expression profiling identified a number of NF-κB target genes involved in cell proliferation, apoptosis, immune response, and transcription. We further confirmed that p50 signals modulate the expression of multiple oncogenes (MYB, BCL2), chemokines, and chemokine receptors (CXCL9, CXCL10, CX3CL1, and CCL20). The findings support a crucial role of these constitutively activated NF-κB signals in NPC tumourigenesis and local inflammation. In addition to expression of the viral oncoprotein LMP1, genetic alteration of several NF-κB regulators (eg TRAF3, TRAF2, NFKBIA, A20) also contributes to the aberrant NF-κB activation in EBV-associated NPC. Except for LMP1-expressing C15 cells, all NPC tumour lines harbour at least one of these genetic alterations. Importantly, missense mutations of TRAF3, TRAF2, and A20 were also detected in 3/33 (9.1%) primary tumours. Taken together with the reported LTBR amplification in 7.3% of primary NPCs, genetic alterations in NF-κB pathways occurred in at least 16% of cases of this cancer. The findings indicate that distinct NF-κB signals are constitutively activated in EBV-positive NPC cells by either multiple genetic changes or EBV latent genes.


Asunto(s)
Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/metabolismo , FN-kappa B/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Transducción de Señal , Antineoplásicos/farmacología , Apoptosis , Proteínas del Linfoma 3 de Células B , Secuencia de Bases , Carcinoma , Línea Celular Tumoral , Proliferación Celular , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Regulación Neoplásica de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Datos de Secuencia Molecular , Mutación , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/virología , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Transcripción ReIB/metabolismo , Factores de Transcripción/metabolismo , Transfección
17.
J Pathol ; 231(2): 158-67, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23878065

RESUMEN

Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer which is prevalent in southern China, south-east Asia and northern Africa. The development and stepwise progression of NPC involves accumulation of multiple gross genetic changes during the clonal expansion of Epstein-Barr virus (EBV)-infected nasopharyngeal epithelial cell population. Here, using paired-end whole-transcriptome sequencing, we discovered a number of chimeric fusion transcripts in a panel of EBV-positive tumour lines. Among these transcripts, a novel fusion of ubiquitin protein ligase E3 component n-recognin 5 (UBR5) on 8q22.3 and zinc finger protein 423 (ZNF423) on 16q12.1, identified from the NPC cell line C666-1, was recurrently detected in 12/144 (8.3%) of primary tumours. The fusion gene contains exon 1 of UBR5 and exons 7-9 of ZNF423 and produces a 94 amino acid chimeric protein including the original C-terminal EBF binding domain (ZF29-30) of ZNF423. Notably, the growth of NPC cells with UBR5-ZNF423 rearrangement is dependent on expression of this fusion protein. Knock-down of UBR5-ZNF423 by fusion-specific siRNA significantly inhibited the cell proliferation and colony-forming ability of C666-1 cells. The transforming ability of UBR5-ZNF423 fusion was also confirmed in NIH3T3 fibroblasts. Constitutive expression of UBR5-ZNF423 in NIH3T3 fibroblasts significantly enhanced its anchorage-independent growth in soft agar and induced tumour formation in a nude mouse model. These findings suggest that expression of UBR5-ZNF423 protein might contribute to the transformation of a subset of NPCs, possibly by altering the activity of EBFs (early B cell factors). Identification of the oncogenic UBR5-ZNF423 provides new potential opportunities for therapeutic intervention in NPC.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias Nasofaríngeas/genética , Proteínas Recombinantes de Fusión/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Carcinoma , Línea Celular Tumoral , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Datos de Secuencia Molecular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/virología , Oncogenes/genética , Proteínas , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma , Transfección , Trasplante Heterólogo
18.
Semin Cancer Biol ; 22(2): 127-36, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22249142

RESUMEN

Like other human solid tumors, nasopharyngeal carcinoma (NPC) is a tissue and a systemic disease as much as a cell disease. Tumor cell population in NPC is highly heterogeneous. Heavy infiltration by non-malignant leucocytes results at least in part from the production of abundant inflammatory cytokines by the malignant epithelial cells. There is indirect evidence that interactions between stromal and malignant cells contribute to tumor development. Peripheral blood samples collected from NPC patients contain multiple products derived from the tumor, including cytokines, non-cytokine tumor proteins, tumor exosomes and viral nucleic acids. These products represent a potential source of biomarkers for assessment of tumor aggressiveness, indirect exploration of cellular interactions and monitoring of tumor response to therapeutic agents. Most NPC patients are immunocompetent with evidence of active humoral and cellular immune responses against EBV-antigens at the systemic level. Tumor development is facilitated by local immunosuppressive factors which are not fully understood. Local accumulation of regulatory T-cells is probably one important factor. At least two NPC tumor products are suspected to contribute to their expansion, the cytokine CCL20 and the tumor exosomes carrying galectin 9. In the future, new therapeutic modalities will probably aim at breaking immune tolerance or at blocking cellular interactions critical for tumor growth.


Asunto(s)
Citocinas/inmunología , Neoplasias Nasofaríngeas/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Carcinoma , Quimiocina CCL20/inmunología , Quimiocina CCL20/metabolismo , Citocinas/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/patología , Exosomas/inmunología , Exosomas/metabolismo , Herpesvirus Humano 4/inmunología , Humanos , Modelos Inmunológicos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/complicaciones , Neoplasias Nasofaríngeas/patología , Linfocitos T/metabolismo
19.
Virol J ; 10: 119, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23590857

RESUMEN

BACKGROUND: Because latent Epstein Barr (EBV)-infection is a specific characteristic of malignant nasopharyngeal carcinoma (NPC), various molecules of viral origin are obvious candidate biomarkers in this disease. In a previous study, we could show in a few clinical samples that it was possible to detect a category of EBV microRNAs called miR-BARTs in the plasma of at least a fraction of NPC patients. The first aim of the present study was to investigate the status of circulating miR-BART17-5p (one of the miR-BARTs hereafter called miR-BART17) and EBV DNA in a larger series of NPC plasma samples. The second aim was to determine whether or not circulating miR-BART17 was carried by plasma exosomes. PATIENTS AND METHODS: Plasma samples were collected from 26 NPC patients and 10 control donors, including 9 patients with non-NPC Head and Neck squamous cell carcinoma and one healthy EBV carrier. Concentrations of miR-BART17 and two cellular microRNAs (hsa-miR-16 and -146a) were assessed by real-time quantitative PCR with spike-in normalization and absolute quantification. In addition, for 2 patients, exosome distributions of miR-BART17 and miR-16 were investigated following plasma lipoprotein fractionation by isopycnic density gradient ultrcentrifugation. RESULTS: The miR-BART17 was significantly more abundant in plasma samples from NPC patients compared to non-NPC donors. Above a threshold of 506 copies/mL, detection of miR-BART17 was highly specific for NPC patients (ROC curve analysis: AUC=0.87 with true positive rate = 0.77, false positive rate = 0.10). In this relatively small series, the concentration of plasma miR-BART17 and the plasma EBV DNA load were not correlated. When plasma samples were fractionated, miR-BART17 co-purified with a protein-rich fraction but not with exosomes. CONCLUSIONS: Detection of high concentrations of plasma miR-BART17 is consistent in NPC patients. This parameter is, at least in part, independent of the viral DNA load. Circulating miR-BART17 does not co-purify with exosomes.


Asunto(s)
Biomarcadores/sangre , Herpesvirus Humano 4/genética , MicroARNs/sangre , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/virología , Plasma/química , ARN Viral/sangre , Adulto , Anciano , Transporte Biológico , Carcinoma , ADN Viral/sangre , Exosomas/virología , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Carcinoma Nasofaríngeo , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
J Pathol ; 226(3): 471-81, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22009689

RESUMEN

Nasopharyngeal carcinoma (NPC) is an EBV-associated epithelial malignancy which is prevalent in south-east Asia and southern China. Despite the multiple genetic and epigenetic changes reported, the contribution of dysregulated signalling pathways to this distinct type of head and neck cancer is not well understood. Here we demonstrate the up-regulation of NOTCH ligands (JAG1 or DLL4) and effector (HEY1) in the majority of EBV-positive tumour lines and primary tumours. Among the NOTCH receptors, NOTCH3 was over-expressed in all EBV-positive tumour lines and 92.5% of primary tumours. Aberrant activation of NOTCH3 signalling was consistently detected in all these samples. These findings imply that NOTCH3 may play an crucial role in the development of NPC. By NOTCH3 specific siRNA, NOTCH3 signalling was suppressed and thereby significant growth inhibition and apoptosis induction occurred in NPC cells. Down-regulation of a number of targets involved in cell proliferation, eg CCND1, C-MYC,NFKB1, and survival, eg BCL2, BCL-XL, SURVIVIN, was confirmed in the NOTCH3 knockdown NPC cells. Importantly, NOTCH3 knockdown highly enhanced the sensitivity of NPC cells to cisplatin treatment. Furthermore, we revealed that the ability of NPC cells to form spheroids in vitro and tumours in nude mice was also significantly decreased after knockdown of NICD3 expression. These findings indicate that activation of NOTCH3 pathway is a critical oncogenic event in NPC tumourigenesis. Targeting NOTCH3 signalling may serve as a potential therapeutic approach for treating patients suffering from EBV-associated NPC.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Infecciones por Virus de Epstein-Barr/complicaciones , Neoplasias Nasofaríngeas/tratamiento farmacológico , Receptores Notch/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Apoptosis/fisiología , Carcinoma , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes Relacionados con las Neoplasias/fisiología , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ratones , Ratones Desnudos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/virología , Trasplante de Neoplasias , ARN Interferente Pequeño/metabolismo , Receptor Notch3 , Receptores Notch/metabolismo , Esferoides Celulares/fisiología , Transfección , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA