Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 285(45): 34382-9, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20807763

RESUMEN

Synthesis of the largest cytochrome c oxidase (CcO) subunit, Cox1, on yeast mitochondrial ribosomes is coupled to assembly of CcO. The translational activator Mss51 is sequestered in early assembly intermediate complexes by an interaction with Cox14 that depends on the presence of newly synthesized Cox1. If CcO assembly is prevented, the level of Mss51 available for translational activation is reduced. We deleted the C-terminal 11 or 15 residues of Cox1 by site-directed mutagenesis of mtDNA. Although these deletions did not prevent respiratory growth of yeast, they eliminated the assembly-feedback control of Cox1 synthesis. Furthermore, these deletions reduced the strength of the Mss51-Cox14 interaction as detected by co-immunoprecipitation, confirming the importance of the Cox1 C-terminal residues for Mss51 sequestration. We surveyed a panel of mutations that block CcO assembly for the strength of their effect on Cox1 synthesis, both by pulse labeling and expression of the ARG8(m) reporter fused to COX1. Deletion of the nuclear gene encoding Cox6, one of the first subunits to be added to assembling CcO, caused the most severe reduction in Cox1 synthesis. Deletion of the C-terminal 15 amino acids of Cox1 increased Cox1 synthesis in the presence of each of these mutations, except pet54. Our data suggest a novel activity of Pet54 required for normal synthesis of Cox1 that is independent of the Cox1 C-terminal end.


Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
2.
Genetics ; 182(2): 519-28, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19307606

RESUMEN

Members of the Oxa1/YidC/Alb3 family of protein translocases are essential for assembly of energy-transducing membrane complexes. In Saccharomyces cerevisiae, Oxa1 and its paralog, Cox18, are required for assembly of Cox2, a mitochondrially encoded subunit of cytochrome c oxidase. Oxa1 is known to be required for cotranslational export of the Cox2 N-terminal domain across the inner mitochondrial membrane, while Cox18 is known to be required for post-translational export of the Cox2 C-tail domain. We find that overexpression of Oxa1 does not compensate for the absence of Cox18 at the level of respiratory growth. However, it does promote some translocation of the Cox2 C-tail domain across the inner membrane and causes increased accumulation of Cox2, which remains unassembled. This result suggests that Cox18 not only translocates the C-tail, but also must deliver it in a distinct state competent for cytochrome oxidase assembly. We identified respiring mutants from a cox18Delta strain overexpressing OXA1, whose respiratory growth requires overexpression of OXA1. The recessive nuclear mutations allow some assembly of Cox2 into cytochrome c oxidase. After failing to identify these mutations by methods based on transformation, we successfully located them to MGR1 and MGR3 by comparative hybridization to whole-genome tiling arrays and microarray-assisted bulk segregant analysis followed by linkage mapping. While Mgr1 and Mgr3 are known to associate with the Yme1 mitochondrial inner membrane i-AAA protease and to participate in membrane protein degradation, their absence does not appear to stabilize Cox2 under these conditions. Instead, Yme1 probably chaperones the folding and/or assembly of Oxa1-exported Cox2 in the absence of Mrg1 or Mgr3, since respiratory growth and cytochrome c oxidase assembly in a cox18 mgr3 double-mutant strain overexpressing OXA1 is YME1 dependent.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Respiración de la Célula/genética , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Fenotipo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
3.
Biochim Biophys Acta ; 1777(9): 1147-56, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18498758

RESUMEN

We have previously used inhibitors interacting with the Qn site of the yeast cytochrome bc(1) complex to obtain yeast strains with resistance-conferring mutations in cytochrome b as a means to investigate the effects of amino acid substitutions on Qn site enzymatic activity [M.G. Ding, J.-P. di Rago, B.L. Trumpower, Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to ilicicolin H, a novel Qn site inhibitor, J. Biol. Chem. 281 (2006) 36036-36043.]. Although the screening produced various interesting cytochrome b mutations, it depends on the availability of inhibitors and can only reveal a very limited number of mutations. Furthermore, mutations leading to a respiratory deficient phenotype remain undetected. We therefore devised an approach where any type of mutation can be efficiently introduced in the cytochrome b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8(m)). Subsequently replacing ARG8(m) with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on non-fermentable substrates. If the mutated cytochrome b is non-functional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit(-)). With this system, we created eight different yeast strains containing point mutations at three different codons in cytochrome b affecting center N. In addition, we created three point mutations affecting arginine 79 in center P. This is the first time mutations have been created for three of the loci presented here, and nine of the resulting mutants have never been described before.


Asunto(s)
Citocromos b/genética , Citocromos b/metabolismo , Mutagénesis , Mutación/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Medios de Cultivo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Fermentación , Genes Fúngicos , Vectores Genéticos , Intrones/genética , Mitocondrias/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Transaminasas/metabolismo
4.
Genetics ; 175(3): 1117-26, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17194786

RESUMEN

Rsm28p is a dispensable component of the mitochondrial ribosomal small subunit in Saccharomyces cerevisiae that is not related to known proteins found in bacteria. It was identified as a dominant suppressor of certain mitochondrial mutations that reduced translation of the COX2 mRNA. To explore further the function of Rsm28p, we isolated mutations in other genes that caused a synthetic respiratory defective phenotype together with rsm28Delta. These mutations identified three nuclear genes: IFM1, which encodes the mitochondrial translation initiation factor 2 (IF2); FMT1, which encodes the methionyl-tRNA-formyltransferase; and RMD9, a gene of unknown function. The observed genetic interactions strongly suggest that the ribosomal protein Rsm28p and Ifm1p (IF2) have similar and partially overlapping functions in yeast mitochondrial translation initiation. Rmd9p, bearing a TAP-tag, was localized to mitochondria and exhibited roughly equal distribution in soluble and membrane-bound fractions. A small fraction of the Rmd9-TAP sedimented together with presumed monosomes, but not with either individual ribosomal subunit. Thus, Rmd9 is not a ribosomal protein, but may be a novel factor associated with initiating monosomes. The poorly respiring rsm28Delta, rmd9-V363I double mutant did not have a strong translation-defective phenotype, suggesting that Rmd9p may function upstream of translation initiation, perhaps at the level of localization of mitochondrially coded mRNAs.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Transferasas de Hidroximetilo y Formilo/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Respiración de la Célula/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales , Mutagénesis , Proteínas Ribosómicas , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Biol Cell ; 14(1): 324-33, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12529447

RESUMEN

The core of the cytochrome c oxidase complex is composed of its three largest subunits, Cox1p, Cox2p, and Cox3p, which are encoded in mitochondrial DNA of Saccharomyces cerevisiae and inserted into the inner membrane from the inside. Mitochondrial translation of the COX1, COX2, and COX3 mRNAs is activated mRNA specifically by the nuclearly coded proteins Pet309p, Pet111p, and the concerted action of Pet54p, Pet122p, and Pet494p, respectively. Because the translational activators recognize sites in the 5'-untranslated leaders of these mRNAs and because untranslated mRNA sequences contain information for targeting their protein products, the activators are likely to play a role in localizing translation. Herein, we report physical associations among the mRNA-specific translational activator proteins, located on the matrix side of the inner membrane. These interactions, detected by coimmune precipitation and by two-hybrid experiments, suggest that the translational activator proteins could be organized on the surface of the inner membrane such that synthesis of Cox1p, Cox2p, and Cox3p would be colocalized in a way that facilitates assembly of the core of the cytochrome c oxidase complex. In addition, we found interactions between Nam1p/Mtf2p and the translational activators, suggesting an organized delivery of mitochondrial mRNAs to the translation system.


Asunto(s)
Isoenzimas/metabolismo , Mitocondrias/enzimología , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales , Proteínas Nucleares/metabolismo , Factores de Iniciación de Péptidos , Pruebas de Precipitina , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Mol Biol Cell ; 20(20): 4371-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19710419

RESUMEN

Functional interactions of the translational activator Mss51 with both the mitochondrially encoded COX1 mRNA 5'-untranslated region and with newly synthesized unassembled Cox1 protein suggest that it has a key role in coupling Cox1 synthesis with assembly of cytochrome c oxidase. Mss51 is present at levels that are near rate limiting for expression of a reporter gene inserted at COX1 in mitochondrial DNA, and a substantial fraction of Mss51 is associated with Cox1 protein in assembly intermediates. Thus, sequestration of Mss51 in assembly intermediates could limit Cox1 synthesis in wild type, and account for the reduced Cox1 synthesis caused by most yeast mutations that block assembly. Mss51 does not stably interact with newly synthesized Cox1 in a mutant lacking Cox14, suggesting that the failure of nuclear cox14 mutants to decrease Cox1 synthesis, despite their inability to assemble cytochrome c oxidase, is due to a failure to sequester Mss51. The physical interaction between Mss51 and Cox14 is dependent upon Cox1 synthesis, indicating dynamic assembly of early cytochrome c oxidase intermediates nucleated by Cox1. Regulation of COX1 mRNA translation by Mss51 seems to be an example of a homeostatic mechanism in which a positive effector of gene expression interacts with the product it regulates in a posttranslational assembly process.


Asunto(s)
Complejo IV de Transporte de Electrones/biosíntesis , Regulación Fúngica de la Expresión Génica/fisiología , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/fisiología , Regiones no Traducidas 5' , Complejo IV de Transporte de Electrones/genética , Genes Reporteros , Genes Sintéticos , Homeostasis , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Biosíntesis de Proteínas/fisiología , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/fisiología , Subunidades de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
7.
Methods Enzymol ; 456: 491-506, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19348906

RESUMEN

Cytochrome b is a pivotal protein subunit of the cytochrome bc(1) complex and forms the ubiquinol oxidation site in the enzyme that is generally thought to be the primary site where electrons are aberrantly diverted from the enzyme, reacting with oxygen to form superoxide anion. In addition, recent studies have shown that mutations in cytochrome b can substantially increase rates of oxygen radical formation by the bc(1) complex. It would, thus, be advantageous to be able to manipulate cytochrome b by mutagenesis of the cytochrome b gene to better understand the role of cytochrome b in oxygen radical formation. Cytochrome b is encoded in the mitochondrial genome in eukaryotic cells, and introduction of point mutations into the gene is generally cumbersome because of the tedious screening process for positive clones. In addition, previously it has been especially difficult to introduce point mutations that lead to loss of respiratory function, as might be expected of mutations that markedly enhance oxygen radical formation. To more efficiently introduce amino acid changes into cytochrome b we have devised a method for mutagenesis of the Saccharomyces cerevisiae mitochondrial cytochrome b gene that uses a recoded ARG8 gene as a "placeholder" for the wild-type b gene. In this method ARG8, a gene that is normally encoded by nuclear DNA, replaces the naturally occurring mitochondrial cytochrome b gene, resulting in ARG8 expressed from the mitochondrial genome (ARG8(m)). Subsequently replacing ARG8(m) with mutated versions of cytochrome b results in arginine auxotrophy. Respiratory-competent cytochrome b mutants can be selected directly by virtue of their ability to restore growth on nonfermentable substrates. If the mutated cytochrome b is nonfunctional, the presence of the COX2 respiratory gene marker on the mitochondrial transforming plasmid enables screening for cytochrome b mutants with a stringent respiratory deficiency (mit(-)).


Asunto(s)
Citocromos b/metabolismo , Mitocondrias/enzimología , Mutación Puntual , Especies Reactivas de Oxígeno/metabolismo , Regiones no Traducidas 3' , Secuencia de Bases , Ciclooxigenasa 2/genética , Cartilla de ADN , Intrones , Plásmidos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
8.
Eukaryot Cell ; 4(2): 337-45, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15701796

RESUMEN

Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.


Asunto(s)
ADN Mitocondrial , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alelos , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/genética , Mutación , Señales de Clasificación de Proteína/genética , Subunidades de Proteína/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA