Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Bacteriol ; 200(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29109187

RESUMEN

Type II toxin-antitoxin (TA) systems play a critical role in the establishment and maintenance of bacterial dormancy. They are composed of a protein toxin and its cognate protein antitoxin. They function to regulate growth under conditions of stress, such as starvation or antibiotic treatment. As cellular proteases degrade the antitoxin, which normally binds and neutralizes the toxin, this frees the toxin to act on its cellular targets and arrest bacterial growth. TA systems are of particular concern in regard to pathogenic organisms, such as nontypeable Haemophilus influenzae (NTHi), as dormancy may lead to chronic infections and failure of antibiotic treatment. Many targets of VapC toxins have not been identified, to date, and this knowledge is crucial to understanding how toxins control the establishment and maintenance of bacterial dormancy. Accordingly, we characterized the target specificity of the VapC toxins from the two paralogous NTHi vapBC TA systems. RNA sequencing and Northern blot analysis revealed that VapC1 and VapC2 cleave tRNAfMet in the anticodon loop. Overexpression of tRNAfMet suppresses VapC toxicity, suggesting that translation inhibition results from the depletion of tRNAfMet These experiments also identified base pairs in the tRNAfMet anticodon stem that play a key role in VapC-specific cleavage of the tRNA. Together these findings suggest the potential for NTHi VapC1 and VapC2 to induce dormancy by sequence-specific cleavage of tRNAfMetIMPORTANCE Bacterial persistence is a significant concern in regard to pathogenic organisms, such as nontypeable Haemophilus influenzae, as it can result in recurrent and chronic infections. Toxin-antitoxin systems can lead to persistence by causing bacteria to enter a slow-growing state that renders them antibiotic tolerant. Type II toxin components affect a wide variety of bacterial targets in order to elicit dormancy, and for many toxin-antitoxin systems, these mechanisms are not well understood. Thus, in order to understand how vapBC toxin-antitoxin systems cause dormancy, it is crucial to investigate the substrate specificity of VapC toxins. This study identifies the target of the VapC1 and VapC2 toxins from NTHi and takes important steps toward understanding the specificity of these toxins for their tRNA target.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia de Metionina/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , ARN de Transferencia de Metionina/genética , Análisis de Secuencia de ARN
2.
J Bacteriol ; 198(24): 3287-3295, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27672196

RESUMEN

Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea, where they play a pivotal role in the establishment and maintenance of dormancy. Under normal growth conditions, the antitoxin neutralizes the toxin. However, under conditions of stress, such as nutrient starvation or antibiotic treatment, cellular proteases degrade the antitoxin, and the toxin functions to arrest bacterial growth. We characterized the specificity determinants of the interactions between VapB antitoxins and VapC toxins from nontypeable Haemophilus influenzae (NTHi) in an effort to gain a better understanding of how antitoxins control toxin activity and bacterial persistence. We studied truncated and full-length antitoxins with single amino acid mutations in the toxin-binding domain. Coexpressing the toxin and antitoxin in Escherichia coli and measuring bacterial growth by dilution plating assayed the ability of the mutant antitoxins to neutralize the toxin. Our results identified two single amino acid residues (W48 and F52) in the C-terminal region of the VapB2 antitoxin necessary for its ability to neutralize its cognate VapC2 toxin. Additionally, we attempted to alter the specificity of VapB1 by making a mutation that would allow it to neutralize its noncognate toxin. A mutation in VapB1 to contain the tryptophan residue identified herein as important in the VapB2-VapC2 interaction resulted in a VapB1 mutant (the T47W mutant) that binds to and neutralizes both its cognate VapC1 and noncognate VapC2 toxins. This represents the first example of a single mutation causing relaxed specificity in a type II antitoxin. IMPORTANCE: Toxin-antitoxin systems are of particular concern in pathogenic organisms, such as nontypeable Haemophilus influenzae, as they can elicit dormancy and persistence, leading to chronic infections and failure of antibiotic treatment. Despite the importance of the TA interaction, the specificity determinants for VapB-VapC complex formation remain uncharacterized. Thus, our understanding of how antitoxins control toxin-induced dormancy and bacterial persistence requires thorough investigation of antitoxin specificity for its cognate toxin. This study characterizes the crucial residues of the VapB2 antitoxin from NTHi necessary for its interaction with VapC2 and provides the first example of a single amino acid change altering the toxin specificity of an antitoxin.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Haemophilus influenzae/metabolismo , Secuencia de Aminoácidos , Antitoxinas/química , Antitoxinas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Haemophilus influenzae/química , Haemophilus influenzae/genética , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia
3.
J Bacteriol ; 197(7): 1197-207, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25622615

RESUMEN

UNLABELLED: Bacterial toxin-antitoxin systems play a critical role in the regulation of gene expression, leading to developmental changes, reversible dormancy, and cell death. Type II toxin-antitoxin pairs, composed of protein toxins and antitoxins, exist in nearly all bacteria and are classified into six groups on the basis of the structure of the toxins. The VapBC group comprises the most common type II system and, like other toxin-antitoxin systems, functions to elicit dormancy by inhibiting protein synthesis. Activation of toxin function requires protease degradation of the VapB antitoxin, which frees the VapC toxin from the VapBC complex, allowing it to hydrolyze the RNAs required for translation. Generally, type II antitoxins bind with high specificity to their cognate toxins via a toxin-binding domain and endow the complex with DNA-binding specificity via a DNA-binding domain. Despite the ubiquity of VapBC systems and their critical role in the regulation of gene expression, few functional studies have addressed the details of VapB-VapC interactions. Here we report on the results of experiments designed to identify molecular determinants of the specificity of the Mycobacterium tuberculosis VapB4 antitoxin for its cognate VapC4 toxin. The results identify the minimal domain of VapB4 required for this interaction as well as the amino acid side chains required for binding to VapC4. These findings have important implications for the evolution of VapBC toxin-antitoxin systems and their potential as targets of small-molecule protein-protein interaction inhibitors. IMPORTANCE: VapBC toxin-antitoxin pairs are the most widespread type II toxin-antitoxin systems in bacteria, where they are thought to play key roles in stress-induced dormancy and the formation of persisters. The VapB antitoxins are critical to these processes because they inhibit the activity of the toxins and provide the DNA-binding specificity that controls the synthesis of both proteins. Despite the importance of VapB antitoxins and the existence of several VapBC crystal structures, little is known about their functional features in vivo. Here we report the findings of the first comprehensive structure-function analysis of a VapB toxin. The results identify the minimal toxin-binding domain, its modular antitoxin function, and the specific amino acid side chains required for its activity.


Asunto(s)
Antitoxinas/química , Antitoxinas/farmacología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/antagonistas & inhibidores , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Dominio Catalítico , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína
4.
RNA ; 18(10): 1934-45, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22923767

RESUMEN

RNA surveillance systems function at critical steps during the formation and function of RNA molecules in all organisms. The RNA exosome plays a central role in RNA surveillance by processing and degrading RNA molecules in the nucleus and cytoplasm of eukaryotic cells. The exosome functions as a complex of proteins composed of a nine-member core and two ribonucleases. The identity of the molecular determinants of exosome RNA substrate specificity remains an important unsolved aspect of RNA surveillance. In the nucleus of Saccharomyces cerevisiae, TRAMP complexes recognize and polyadenylate RNAs, which enhances RNA degradation by the exosome and may contribute to its specificity. TRAMPs contain either of two putative RNA-binding factors called Air proteins. Previous studies suggested that these proteins function interchangeably in targeting the poly(A)-polymerase activity of TRAMPs to RNAs. Experiments reported here show that the Air proteins govern separable functions. Phenotypic analysis and RNA deep-sequencing results from air mutants reveal specific requirements for each Air protein in the regulation of the levels of noncoding and coding RNAs. Loss of these regulatory functions results in specific metabolic and plasmid inheritance defects. These findings reveal differential functions for Air proteins in RNA metabolism and indicate that they control the substrate specificity of the RNA exosome.


Asunto(s)
Estabilidad del ARN , ARN Nuclear/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Organismos Modificados Genéticamente , Poli A/metabolismo , Unión Proteica , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Especificidad por Sustrato
5.
J Biol Chem ; 285(6): 3540-3547, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19955569

RESUMEN

The RNA-processing exosome contains ribonucleases that degrade aberrant RNAs in archael and eukaryotic cells. In Saccharomyces cerevisiae, the nuclear/nucleolar 3'-5' exoribonuclease Rrp6 distinguishes the nuclear exosome from the cytoplasmic exosome. In vivo, the TRAMP complex enhances the ability of the nuclear exosome to destroy some aberrant RNAs. Previous reports showed that purified TRAMP enhanced RNA degradation by the nuclear exosome in vitro. However, the exoribonucleolytic component(s) of the nuclear exosome enhanced by TRAMP remain unidentified. We show that TRAMP does not significantly enhance RNA degradation by purified exosomes lacking Rrp6 in vitro, suggesting that TRAMP activation experiments with nuclear exosome preparations reflect, in part, effects on the activity of Rrp6. Consistent with this, we show that incubation of purified TRAMP with recombinant Rrp6 results in a 10-fold enhancement of the rate of RNA degradation. This increased activity results from enhancement of the hydrolytic activity of Rrp6 because TRAMP cannot enhance the activity of an Rrp6 mutant lacking a key amino acid side chain in its active site. We observed no ATP or polyadenylation dependence for the enhancement of Rrp6 activity by TRAMP, suggesting that neither the poly(A) polymerase activity of Trf4 nor the helicase activity of Mtr4 plays a role in the enhancement. These findings identify TRAMP as an exosome-independent enhancer of Rrp6 activity.


Asunto(s)
Núcleo Celular/metabolismo , Exorribonucleasas/metabolismo , Exosomas/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Western Blotting , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma , Poli A/metabolismo , Poliadenilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Infect Immun ; 79(4): 1728-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282418

RESUMEN

AM-19226 is a pathogenic O39 serogroup Vibrio cholerae strain that lacks the typical virulence factors for colonization (toxin-coregulated pilus [TCP]) and toxin production (cholera toxin [CT]) and instead encodes a type III secretion system (T3SS). The mechanism of pathogenesis is unknown, and few effector proteins have been identified. We therefore undertook a survey of the open reading frames (ORFs) within the ∼49.7-kb T3SS genomic island to identify potential effector proteins. We identified 15 ORFs for their ability to inhibit growth when expressed in yeast and then used a ß-lactamase (TEM1) fusion reporter system to demonstrate that 11 proteins were bona fide effectors translocated into HeLa cells in vitro in a T3SS-dependent manner. One effector, which we named VopX (A33_1663), is conserved only in V. cholerae and Vibrio parahaemolyticus T3SS-positive strains and has not been previously studied. A vopX deletion reduces the ability of strain AM-19226 to colonize in vivo, and the bile-induced expression of a vopX-lacZ transcriptional fusion in vitro is regulated by the T3SS-encoded transcriptional regulators VttR(A) and VttR(B). An RLM1 yeast deletion strain rescued the growth inhibition induced by VopX expression, suggesting that VopX interacts with components of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway. The collective results show that the V. cholerae T3SS encodes multiple effector proteins, one of which likely has novel activities that contribute to disease via interference with eukaryotic signaling pathways.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Factores de Virulencia/genética , Animales , Secuencia de Bases , Western Blotting , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Ratones , Microscopía Confocal , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
RNA ; 15(6): 1045-58, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19369424

RESUMEN

The nuclear exosome functions in a variety of pathways catalyzing formation of mature RNA 3'-ends or the destruction of aberrant RNA transcripts. The RNA 3'-end formation activity of the exosome appeared restricted to small noncoding RNAs. However, the nuclear exosome controls the level of the mRNA encoding the poly(A)-binding protein Nab2p in a manner requiring an A(26) sequence in the mRNA 3' untranslated regions (UTR), and the activities of Nab2p and the exosome-associated exoribonuclease Rrp6p. Here we show that the A(26) sequence inhibits normal 3'-end processing of NAB2 mRNA in vivo and in vitro, and makes formation of the mature 3'-end dependent on trimming of the transcript by the core exosome and the Trf4p component of the TRAMP complex from a downstream site. The detection of mature, polyadenylated transcripts ending at, or within, the A(26) sequence indicates that exosome trimming sometimes gives way to polyadenylation of the mRNA. Alternatively, Rrp6p and the TRAMP-associated Mtr4p degrade these transcripts thereby limiting the amount of Nab2p in the cell. These findings suggest that NAB2 mRNA 3'-end formation requires the exosome and TRAMP complex, and that competition between polyadenylation and Rrp6p-dependent degradation controls the level of this mRNA.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Exorribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Procesamiento de Término de ARN 3' , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 3'/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Poliadenilación , Estabilidad del ARN , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/metabolismo
8.
Adv Exp Med Biol ; 702: 91-104, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21713680

RESUMEN

This chapter reviews the present state of knowledge on the activity of enzymes that function with the RNA exosome in the nucleus. In this compartment, the exosome interacts physically and functionally with the exoribonuclease Rrp6 and several cofactors, most prominently Rrp47 and the TRAMP complex. These interactions decide the fate of RNA precursors from transcription through the formation of mature ribonucleoprotein particles (RNPs) and the export of the RNPs to the cytoplasm. The nuclear exosome catalyzes the formation of the mature 3' ends of many of these RNAs, but in other cases degrades the RNAs to mononucleotides. Cofactors such as Mpp6, TRAMP and the Nrd1/Nab3 complex play important roles in determining the outcome of the interaction of RNPs with the nuclear exosome. The details that govern the specificity of these decisions remain a rich source for future investigation.


Asunto(s)
Exosomas , Proteínas de Saccharomyces cerevisiae , Complejo Multienzimático de Ribonucleasas del Exosoma , Exosomas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Nucleic Acids Res ; 36(21): 6645-55, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18940861

RESUMEN

The RNA exosome processes and degrades RNAs in archaeal and eukaryotic cells. Exosomes from yeast and humans contain two active exoribonuclease components, Rrp6p and Dis3p/Rrp44p. Rrp6p is concentrated in the nucleus and the dependence of its function on the nine-subunit core exosome and Dis3p remains unclear. We found that cells lacking Rrp6p accumulate poly(A)+ rRNA degradation intermediates distinct from those found in cells depleted of Dis3p, or the core exosome component Rrp43p. Depletion of Dis3p in the absence of Rrp6p causes a synergistic increase in the levels of degradation substrates common to the core exosome and Rrp6p, but has no effect on Rrp6p-specific substrates. Rrp6p lacking a portion of its C-terminal domain no longer co-purifies with the core exosome, but continues to carry out RNA 3'-end processing of 5.8S rRNA and snoRNAs, as well as the degradation of certain truncated Rrp6-specific rRNA intermediates. However, disruption of Rrp6p-core exosome interaction results in the inability of the cell to efficiently degrade certain poly(A)+ rRNA processing products that require the combined activities of Dis3p and Rrp6p. These findings indicate that Rrp6p may carry out some of its critical functions without physical association with the core exosome.


Asunto(s)
Exorribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento de Término de ARN 3' , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular/enzimología , Exorribonucleasas/química , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma , Eliminación de Gen , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , ARN Ribosómico/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
10.
Adv Exp Med Biol ; 702: 91-104, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21618877

RESUMEN

This chapter reviews the present state of knowledge on the activity of enzymes that function with the RNA exosome in the nucleus. In this compartment, the exosome interacts physically and functionally with the exoribonuclease Rrp6 and several cofactors, most prominently Rrp47 and the TRAMP complex. These interactions decide the fate of RNA precursors from transcription through the formation of mature ribonucleoprotein particles (RNPs) and the export of the RNPs to the cytoplasm. The nuclear exosome catalyzes the formation of the mature 3' ends of many of these RNAs, but in other cases degrades the RNAs to mononucleotides. Cofactors such as Mpp6, TRAMP and the Nrd1/Nab3 complex play important roles in determining the outcome of the interaction of RNPs with the nuclear exosome. The details that govern the specificity of these decisions remain a rich source for future investigation.


Asunto(s)
Coenzimas/metabolismo , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Exosomas/química , Exosomas/metabolismo , Proteínas Nucleares/metabolismo , Coenzimas/química , Complejo Multienzimático de Ribonucleasas del Exosoma , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Conformación Proteica , ARN/metabolismo , Precursores del ARN/metabolismo , ARN no Traducido/metabolismo
11.
Genetics ; 179(1): 323-30, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18493057

RESUMEN

The chemotherapeutic drug 5-fluorouracil (5FU) disrupts DNA synthesis by inhibiting the enzymatic conversion of dUMP to dTMP. However, mounting evidence indicates that 5FU has important effects on RNA metabolism that contribute significantly to the toxicity of the drug. Strains with mutations in nuclear RNA-processing exosome components, including Rrp6p, exhibit strong 5FU hypersensitivity. Studies also suggest that 5FU-containing RNA can inhibit pseudouridylation, the most abundant post-transcriptional modification of noncoding RNA. We examined the effect of modulating the expression and activity of the essential yeast rRNA pseudouridylase Cbf5p on the 5FU hypersensitivity of an rrp6-delta mutant strain. Depletion of Cbf5p suppressed the 5FU hypersensitivity of an rrp6-delta strain, while high-copy expression enhanced sensitivity to the drug. A mutation in the catalytic site of Cbf5p also suppressed the 5FU hypersensitivity in the rrp6-Delta mutant, suggesting that RNA-based 5FU toxicity requires the pseudouridylation activity of Cbf5p. High-copy expression of box H/ACA snoRNAs also suppressed the 5FU hypersensitivity of an rrp6-delta strain, suggesting that sequestration of Cbf5p to a particular guide RNA reduces Cbf5p-dependent 5FU toxicity. On the basis of these results and previous reports that certain pseudouridylases form stable adducts with 5FU-containing RNA, we suggest that Cbf5p binds tightly to substrates containing 5FU, causing their degradation by the TRAMP/exosome-mediated RNA surveillance pathway.


Asunto(s)
Fluorouracilo/metabolismo , Hidroliasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Western Blotting , Replicación del ADN/efectos de los fármacos , Fluorouracilo/toxicidad , Hidroliasas/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Trends Cell Biol ; 12(2): 90-6, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11849973

RESUMEN

Recent studies of the eukaryotic ribosomal RNA processing pathway have identified a complex of ten riboexonucleases called the exosome that plays a central role in the precise formation of the 3' ends of several types of RNAs. The exosome also destroys excess ribosomal RNA precursors and unused intermediates and degrades poly(A)-mRNAs in the cytoplasm. In the nucleus, the complex appears to function in a regulated mRNA surveillance system that degrades transcripts in response to defects in the mRNA processing and export pathways. How the cell regulates the nucleolytic prowess of the exosome to ensure correct and timely synthesis and destruction of RNAs is a central focus of current research.


Asunto(s)
Exorribonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Animales , Humanos , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/metabolismo
13.
Wiley Interdiscip Rev RNA ; 10(1): e1506, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30296016

RESUMEN

Prokaryotic toxin-antitoxin (TA) systems are composed of a protein toxin and its cognate antitoxin. These systems are abundant in bacteria and archaea and play an important role in growth regulation. During favorable growth conditions, the antitoxin neutralizes the toxin's activity. However, during conditions of stress or starvation, the antitoxin is inactivated, freeing the toxin to inhibit growth and resulting in dormancy. One mechanism of growth inhibition used by several TA systems results from targeting transfer RNAs (tRNAs), either through preventing aminoacylation, acetylating the primary amino group, or endonucleolytic cleavage. All of these mechanisms inhibit translation and result in growth arrest. Many of these toxins only act on a specific tRNA or a specific subset of tRNAs; however, more work is necessary to understand the specificity determinants of these toxins. For the toxins whose specificity has been characterized, both sequence and structural components of the tRNA appear important for recognition by the toxin. Questions also remain regarding the mechanisms used by dormant bacteria to resume growth after toxin induction. Rescue of stalled ribosomes by transfer-messenger RNAs, removal of acetylated amino groups from tRNAs, or ligation of cleaved RNA fragments have all been implicated as mechanisms for reversing toxin-induced dormancy. However, the mechanisms of resuming growth after induction of the majority of tRNA targeting toxins are not yet understood. This article is categorized under: Translation > Translation Regulation RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.


Asunto(s)
ARN de Transferencia , Sistemas Toxina-Antitoxina , Toxinas Bacterianas , Biosíntesis de Proteínas
14.
Mol Cell Biol ; 25(5): 1577-85, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15713618

RESUMEN

The RNA-processing exosome is a complex of riboexonucleases required for 3'-end formation of some noncoding RNAs and for the degradation of mRNAs in eukaryotes. The nuclear form of the exosome functions in an mRNA surveillance pathway that retains and degrades improperly processed precursor mRNAs within the nucleus. We report here that the nuclear exosome controls the level of NAB2 mRNA, encoding the nuclear poly(A)+-RNA-binding protein Nab2p. Mutations affecting the activity of the nuclear, but not the cytoplasmic, exosome cause an increase in the amount of NAB2 mRNA. Cis- and trans-acting mutations that inhibit degradation by the nuclear-exosome subunit Rrp6p result in elevated levels of NAB2 mRNA. Control of NAB2 mRNA levels occurs posttranscriptionally and requires a sequence of 26 consecutive adenosines (A26) in the NAB2 3' untranslated region, which represses NAB2 3'-end formation and sensitizes the transcript to degradation by Rrp6p. Analysis of NAB2 mRNA levels in a nab2-1 mutant and in the presence of excess Nab2p indicates that Nab2p activity negatively controls NAB2 mRNA levels in an A26- and Rrp6p-dependent manner. These findings suggest a novel regulatory circuit in which the nuclear exosome controls the level of NAB2 mRNA in response to changes in the activity of Nab2 protein.


Asunto(s)
Exorribonucleasas/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte Nucleocitoplasmático/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/metabolismo , Secuencia de Bases , Núcleo Celular/metabolismo , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma , Expresión Génica/genética , Datos de Secuencia Molecular , Mutación/genética , Proteínas de Transporte Nucleocitoplasmático/fisiología , Poli A/genética , Poli A/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Estabilidad del ARN , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología
15.
Mol Cell Biol ; 24(24): 10766-76, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15572680

RESUMEN

The antimetabolite 5-fluorouracil (5FU) is a widely used chemotherapeutic for the treatment of solid tumors. Although 5FU slows DNA synthesis by inhibiting the ability of thymidylate synthetase to produce dTMP, the drug also has significant effects on RNA metabolism. Recent genome-wide assays for 5FU-induced haploinsufficiency in Saccharomyces cerevisiae identified genes encoding components of the RNA processing exosome as potential targets of the drug. In this report, we used DNA microarrays to analyze the effect of 5FU on the yeast transcriptome and found that the drug causes the accumulation of polyadenylated fragments of the 27S rRNA precursor and that defects in the nuclear exoribonuclease Rrp6p enhance this effect. The size distribution of these RNAs and their sensitivity to Rrp6p suggest that they are normally degraded by the nuclear exosome and a 5'-3' exoribonuclease. Consistent with this hypothesis, 5FU inhibits the growth of RRP6 mutants with defects in the degradation function of the enzyme and it interferes with the degradation of an rRNA precursor. The detection of poly(A)(+) pre-RNAs in strains defective in various steps in ribosome biogenesis suggests that the production of poly(A)(+) pre-rRNAs may be a general result of defects in rRNA processing. These findings suggest that 5FU inhibits an exosome-dependent surveillance pathway that degrades polyadenylated precursor rRNAs.


Asunto(s)
Antimetabolitos/farmacología , Fluorouracilo/farmacología , Poli A/metabolismo , ARN de Hongos/efectos de los fármacos , ARN Ribosómico/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Genes Fúngicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Poli A/genética , Poliadenilación , Precursores del ARN/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Cell Biol ; 23(16): 5502-15, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897126

RESUMEN

A nuclear mRNA degradation (DRN) system was identified from analysis of mRNA turnover rates in nup116-Delta strains of Saccharomyces cerevisiae lacking the ability to export all RNAs, including poly(A) mRNAs, at the restrictive temperature. Northern blotting, in situ hybridization, and blocking transcription with thiolutin in nup116-delta strains revealed a rapid degradation of mRNAs in the nucleus that was suppressed by the rrp6-delta, rai1-delta, and cbc1-delta deletions, but not by the upf1-delta deletion, suggesting that DRN requires Rrp6p, a 3'-to-5' nuclear exonuclease, the Rat1p, a 5'-to-3' nuclear exonuclease, and Cbc1p, a component of CBC, the nuclear cap binding complex, which may direct the mRNAs to the site of degradation. We propose that certain normal mRNAs retained in the nucleus are degraded by the DRN system, similar to degradation of transcripts with 3' end formation defects in certain mutants.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Complejo Poro Nuclear/química , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma , Eliminación de Gen , Genotipo , Hibridación in Situ , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Mutación , Fenotipo , Poli A , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Tiempo , Transcripción Genética
17.
Toxins (Basel) ; 7(10): 4099-110, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26473925

RESUMEN

Most pathogenic, non-O1/non-O139 serogroup Vibrio cholerae strains cause diarrheal disease in the absence of cholera toxin. Instead, many use Type 3 Secretion System (T3SS) mediated mechanisms to disrupt host cell homeostasis. We identified a T3SS effector protein, VopX, which is translocated into mammalian cells during in vitro co-culture. In a S. cerevisiae model system, we found that expression of VopX resulted in a severe growth defect that was partially suppressed by a deletion of RLM1, encoding the terminal transcriptional regulator of the Cell Wall Integrity MAP kinase (CWI) regulated pathway. Growth of yeast cells in the presence of sorbitol also suppressed the defect, supporting a role for VopX in destabilizing the cell wall. Expression of VopX activated expression of ß-galactosidase from an RLM1-reponsive element reporter fusion, but failed to do so in cells lacking MAP kinases upstream of Rlm1. The results suggest that VopX inhibits cell growth by stimulating the CWI pathway through Rlm1. Rlm1 is an ortholog of mammalian MEF2 transcription factors that are proposed to regulate cell differentiation, proliferation, and apoptosis. The collective findings suggest that VopX contributes to disease by activating MAP kinase cascades that elicit changes in cellular transcriptional programs.


Asunto(s)
Proteínas de Dominio MADS/genética , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas de Secreción Tipo III/genética , Vibrio cholerae/patogenicidad , Factores de Virulencia/genética , Ciclo Celular/genética , Pared Celular/enzimología , Pared Celular/genética , Eliminación de Gen , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Vibrio cholerae/genética
18.
PLoS One ; 9(11): e112921, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25391136

RESUMEN

Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.


Asunto(s)
Antitoxinas/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Dominio Catalítico/genética , Haemophilus influenzae/genética , Mutación/genética , Secuencia de Aminoácidos , Expresión Génica/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/genética , Ribonucleasas/genética , Alineación de Secuencia
19.
Wiley Interdiscip Rev RNA ; 4(2): 217-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23417976

RESUMEN

The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.


Asunto(s)
Exosomas/metabolismo , Complejos Multiproteicos/metabolismo , ARN Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Exosomas/genética , Humanos , Complejos Multiproteicos/genética , ARN Nuclear/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad de la Especie
20.
Genome Biol ; 9(4): 218, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18439328

RESUMEN

Inhibition of the cellular RNA surveillance system in Arabidopsis thaliana results in the accumulation of thousands of transcripts arising from annotated and unannotated regions of the genome. This normally hidden transcriptome is replete with noncoding RNAs with the potential to regulate wide-ranging physiological activities.


Asunto(s)
Genoma de Planta , ARN Mensajero/metabolismo , ARN no Traducido/fisiología , Arabidopsis/genética , Exosomas/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA