Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 28(20): 7631-8, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22515482

RESUMEN

The vertical deposition technique for creating crystalline microstructures is applied for the first time to nonspherical colloids in the form of hollow silica cubes. Controlled deposition of the cubes results in large crystalline films with variable symmetry. The microstructures are characterized in detail with scanning electron microscopy and small-angle X-ray scattering. In single layers of cubes, distorted square to hexagonal ordered arrays are formed. For multilayered crystals, the intralayer ordering is predominantly hexagonal with a hollow site stacking, similar to that of the face centered cubic lattice for spheres. Additionally, a distorted square arrangement in the layers is also found to form under certain conditions. These crystalline films are promising for various applications such as photonic materials.

2.
Langmuir ; 26(16): 13614-21, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695611

RESUMEN

The experimental phase diagram for aqueous mixtures of charged gibbsite platelets and silica spheres is presented. The platelets are 95 nm in diameter, and the diameter ratio between the spheres and the platelets is 0.18. Here the spheres are acting as depletants in the mixtures perturbing the phase behavior of the pure platelet suspensions. An important finding is that a large isotropic/columnar coexistence region has been identified in the phase diagram, which appeared already at low concentrations of the platelets. Microradian X-ray diffraction measurements revealed the structure of the liquid crystalline phases and the orientational order of platelets. An interesting observation is that in the columnar phase the silica spheres are located between the columnar stacks. All samples were in equilibrium because sedimentation did not affect the system because of the relatively small size of the colloidal particles and the charges present at their surfaces.


Asunto(s)
Nanoestructuras/química , Microscopía Electrónica de Transmisión , Nanoestructuras/ultraestructura , Difracción de Rayos X
3.
Langmuir ; 26(4): 2346-51, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20141202

RESUMEN

We present a new technique for large-scale fabrication of colloidal crystals with controllable quality and thickness. The method is based on vertical deposition in the presence of a DC electric field normal to the conducting substrate. The crystal structure and quality are quantitatively characterized by microradian X-ray diffraction, scanning electron microscopy, and optical reflectometry. Attraction between the charged colloidal spheres and the substrate promotes growth of thicker crystalline films, while the best-quality crystals are formed in the presence of repulsion. Highly ordered thick crystalline layers with a small amount of stacking faults and a low mosaic spread can be obtained by optimizing the growth conditions.

4.
J Phys Chem B ; 113(34): 11604-13, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19655775

RESUMEN

In this paper, we present a comprehensive study of the sol-gel transitions and liquid crystal phase transitions in aqueous suspensions of positively charged colloidal gibbsite platelets at pH 4-5 over a wide range of particle concentrations (50-600 g/L) and salt concentrations (10(-4)-10(-1) M NaCl). A detailed sol-gel diagram was established by oscillatory rheological experiments. These demonstrate the presence of kinetically arrested states both at high and at low salt concentrations, enclosing a sol region. Birefringence and iridescence show that in the sol state nematic and hexagonal columnar liquid crystal phases are formed. The gel and liquid crystal structures are studied in further detail using small-angle X-ray scattering (SAXS) and cryo-focused ion beam/scanning electron microscopy (cryo-FIB-SEM). The gel formed at high salt concentration shows signatures of a sponge-like structure and does not display birefringence. In the sol region, by lowering the salt concentration and/or increasing the gibbsite concentration, the nematic phase gradually transforms from the discotic nematic (ND) into the columnar nematic (NC) with much stronger side-to-side interparticle correlations. Subsequently, this NC structure can be either transformed into the hexagonal columnar phase or arrested into a birefringent repulsive gel state with NC structure.

5.
J Phys Chem B ; 117(18): 5623-32, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23631340

RESUMEN

It has been established that the addition of amphiphilic diblock copolymers has a boosting effect in bicontinuous microemulsions by decreasing the minimum amount of surfactant needed to solubilize equal volumes of oil and water. The strength of the polymer effect was found to be about twice larger than the theoretical prediction. This discrepancy is explained by confinement. Previous experimental studies always considered large oil and water domains of size d compared to the typical polymer end-to-end radius, R(ee). The ratio of these two parameters R(ee)/d defines the confinement parameter. We investigated the sensitivity of the polymer influence extending the range of confinement. We combined macroscopic observations of the phase behavior with microscopic measurements of the structure by small-angle neutron scattering (SANS). Both results were compared with computer simulations on the basis of the theoretical concept of Helfrich. The simulations predict an enhanced sensitivity of the polymer at medium confinement and a reversed behavior at larger confinement. The higher sensitivity at medium confinement is only slightly visible experimentally, whereas the reversed behavior (antiboosting) is clearly present. Finally, a comparison with homopolymer addition showed a common high confinement behavior for diblock copolymers and for homopolymers.


Asunto(s)
Polímeros/química , Emulsiones/química , Difracción de Neutrones , Dispersión del Ángulo Pequeño
6.
J Colloid Interface Sci ; 352(2): 354-8, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20880536

RESUMEN

The liquid crystalline phase behavior of sterically-stabilized goethite particles in toluene was studied using small-angle X-ray scattering. The results were compared with those from charged particles in water, with and without magnetic field: similarly rich phase behavior was found. Furthermore, the special magnetic properties were retained after coating the particles with amino-functionalized polyisobutylene chains. A remarkable difference between the aqueous and toluene samples is the latter's tendency to form gels. Smaller domains of the different liquid crystalline phases were observed and the columnar phase does not fully develop, furthermore a higher field is needed to align the full sample.

7.
Langmuir ; 25(17): 10408-12, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19705906

RESUMEN

Using microradian X-ray diffraction, we investigated the crystal structure of convectively assembled colloidal photonic crystals over macroscopic (0.5 mm) distances. Through adaptation of Wilson's theory for X-ray diffraction, we show that certain types of line defects that are often observed in scanning electron microscopy images of the surface of these crystals are actually planar defects at 70.5 degrees angles with the substrate. The defects consist of two parallel hexagonal close-packed planes in otherwise face-centered cubic crystals. Our measurements indicate that these stacking faults cause at least 10% of stacking disorder, which has to be reduced to fabricate high-quality colloidal photonic crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA