Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cell Rep ; 33(2): 108263, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053338

RESUMEN

The advent of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized Parkinson's disease (PD) research, but single-cell transcriptomic analysis suggests unresolved cellular heterogeneity within these models. Here, we perform the largest single-cell transcriptomic study of human iPSC-derived dopaminergic neurons to elucidate gene expression dynamics in response to cytotoxic and genetic stressors. We identify multiple neuronal subtypes with transcriptionally distinct profiles and differential sensitivity to stress, highlighting cellular heterogeneity in dopamine in vitro models. We validate this disease model by showing robust expression of PD GWAS genes and overlap with postmortem adult substantia nigra neurons. Importantly, stress signatures are ameliorated using felodipine, an FDA-approved drug. Using isogenic SNCA-A53T mutants, we find perturbations in glycolysis, cholesterol metabolism, synaptic signaling, and ubiquitin-proteasomal degradation. Overall, our study reveals cell type-specific perturbations in human dopamine neurons, which will further our understanding of PD and have implications for cell replacement therapies.


Asunto(s)
Neuronas Dopaminérgicas/patología , Modelos Biológicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Análisis de la Célula Individual , Estrés Fisiológico , Transcriptoma/genética , Diferenciación Celular/genética , Respiración de la Célula , Colesterol/metabolismo , Ensamble y Desensamble de Cromatina , Neuronas Dopaminérgicas/metabolismo , Regulación hacia Abajo/genética , Estrés del Retículo Endoplásmico/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glucólisis/genética , Humanos , Células Madre Pluripotentes Inducidas/patología , Fosforilación Oxidativa , Estrés Oxidativo/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Análisis de Regresión , Transducción de Señal , Estrés Fisiológico/genética , Sinapsis/metabolismo , Ubiquitina/metabolismo , Regulación hacia Arriba/genética
2.
Stem Cell Res ; 11(3): 1206-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24013066

RESUMEN

Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development.


Asunto(s)
Diferenciación Celular , Neuronas Colinérgicas/citología , Proteínas Hedgehog/metabolismo , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Transducción de Señal , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Calcio/metabolismo , Línea Celular , Linaje de la Célula , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/trasplante , Femenino , Humanos , Células Madre Pluripotentes/metabolismo , Ratas , Ratas Endogámicas Lew , Trasplante Heterólogo
3.
Regen Med ; 7(5): 675-83, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22954438

RESUMEN

AIM: Hypoxia is used within in vitro stem cell culture to recreate conditions similar to the in vivo environment surrounding the early blastocyst, from which embryonic stem cells can be isolated. Traditionally, basic research has used a coculture feeder system to culture pluripotent stem cells; however, it is possible that lowered oxygen may restrict cellular metabolic activity of the inactivated mouse embryonic fibroblasts (iMEFs) by disrupting oxygen-dependent pathways, such as ATP production through aerobic respiration. In this work, we examined the potential to continue using routine culture methods, such as iMEFs, to support human pluripotent cell expansion under hypoxia instead of feeder-free methods that can cause cell instability and offer a poor cell attachment rate. MATERIALS & METHODS: Metabolic activity and viability studies were carried out in normoxic and hypoxic conditions. Pluripotent stem cells were introduced into hypoxia on iMEFs and the rate of colony expansion was compared with normoxic conditions. In addition, pluripotent stem cells were grown in hypoxia for over 6 months to demonstrate maintenance of pluripotency. Immunocytochemistry and western blotting evaluated the activity of the hypoxic transcription factor, HIF1A. RESULTS: Hypoxia does not significantly affect viability or metabolic activity of feeder cells, and there is no detrimental effect on the rate of pluripotent stem cell colony expansion when cells are cultured in hypoxia. In addition, hypoxic pluripotent stem cells maintain their pluripotent nature and ability to differentiate into the three germ layers. CONCLUSION: The traditional iMEF coculture method is suitable for use in hypoxia and does not need to be replaced with feeder-free systems for hypoxic culture of human pluripotent stem cell lines in basic research.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Embrión de Mamíferos/citología , Fibroblastos/citología , Células Madre Pluripotentes/citología , Animales , Biomarcadores/metabolismo , Extractos Celulares , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Supervivencia Celular , Fibroblastos/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Células Madre Pluripotentes/metabolismo , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA