Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 19(7): e1011491, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37399210

RESUMEN

Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Humanos , Isomerasa de Peptidilprolil/metabolismo , Proteínas Bacterianas/metabolismo , Peróxido de Hidrógeno/metabolismo , Bacterias/metabolismo , Macrófagos/metabolismo
2.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35245364

RESUMEN

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Leishmania major , Isomerasa de Peptidilprolil , Proteínas Protozoarias , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Gramnegativas/efectos de los fármacos , Leishmania major/efectos de los fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Recombinantes
3.
Infect Immun ; 87(10)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31331957

RESUMEN

Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to Southeast Asia and northern Australia. Mortality rates in these areas are high even with antimicrobial treatment, and there are few options for effective therapy. Therefore, there is a need to identify antibacterial targets for the development of novel treatments. Cyclophilins are a family of highly conserved enzymes important in multiple cellular processes. Cyclophilins catalyze the cis-trans isomerization of xaa-proline bonds, a rate-limiting step in protein folding which has been shown to be important for bacterial virulence. B. pseudomallei carries a putative cyclophilin B gene, ppiB, the role of which was investigated. A B. pseudomalleiΔppiB (BpsΔppiB) mutant strain demonstrates impaired biofilm formation and reduced motility. Macrophage invasion and survival assays showed that although the BpsΔppiB strain retained the ability to infect macrophages, it had reduced survival and lacked the ability to spread cell to cell, indicating ppiB is essential for B. pseudomallei virulence. This is reflected in the BALB/c mouse infection model, demonstrating the requirement of ppiB for in vivo disease dissemination and progression. Proteomic analysis demonstrates that the loss of PpiB leads to pleiotropic effects, supporting the role of PpiB in maintaining proteome homeostasis. The loss of PpiB leads to decreased abundance of multiple virulence determinants, including flagellar machinery and alterations in type VI secretion system proteins. In addition, the loss of ppiB leads to increased sensitivity toward multiple antibiotics, including meropenem and doxycycline, highlighting ppiB inhibition as a promising antivirulence target to both treat B. pseudomallei infections and increase antibiotic efficacy.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidad , Ciclofilinas/genética , Melioidosis/microbiología , Proteoma/genética , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/efectos de los fármacos , Burkholderia pseudomallei/metabolismo , Línea Celular , Ciclofilinas/deficiencia , Femenino , Eliminación de Gen , Expresión Génica , Homeostasis/genética , Macrófagos/microbiología , Melioidosis/tratamiento farmacológico , Melioidosis/mortalidad , Melioidosis/patología , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana/efectos de los fármacos , Proteoma/clasificación , Proteoma/metabolismo , Análisis de Supervivencia , Virulencia
4.
Front Cell Infect Microbiol ; 14: 1353682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590438

RESUMEN

Introduction: Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response. Methods: Murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection. Results: Global transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1ß levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release. Discussion: These data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Ratones , Burkholderia pseudomallei/metabolismo , Melioidosis/microbiología , Macrófagos/microbiología , Citocinas/metabolismo , Transducción de Señal
5.
J Med Chem ; 66(13): 8876-8895, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37389560

RESUMEN

The macrophage infectivity potentiator (Mip) protein is a promising target for developing new drugs to combat antimicrobial resistance. New rapamycin-derived Mip inhibitors have been designed that may be able to combine two binding modes to inhibit the Mip protein of Burkholderia pseudomallei (BpMip). These novel compounds are characterized by an additional substituent in the middle chain linking the lateral pyridine to the pipecoline moiety, constituting different stereoisomers. These compounds demonstrated high affinity for the BpMip protein in the nanomolar range and high anti-enzymatic activity and ultimately resulted in significantly reduced cytotoxicity of B. pseudomallei in macrophages. They also displayed strong anti-enzymatic activity against the Mip proteins of Neisseria meningitidis and Neisseria gonorrhoeae and substantially improved the ability of macrophages to kill the bacteria. Hence, the new Mip inhibitors are promising, non-cytotoxic candidates for further testing against a broad spectrum of pathogens and infectious diseases.


Asunto(s)
Burkholderia pseudomallei , Neisseria meningitidis , Proteínas Bacterianas , Burkholderia pseudomallei/metabolismo , Macrófagos/metabolismo , Neisseria gonorrhoeae/metabolismo , Neisseria meningitidis/metabolismo , Relación Estructura-Actividad
6.
Virulence ; 13(1): 1945-1965, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36271712

RESUMEN

The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into "actin tails" propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Humanos , Virulencia , Actinas/metabolismo , Melioidosis/microbiología , Factores de Virulencia/metabolismo
7.
J Med Chem ; 63(22): 13355-13388, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32786507

RESUMEN

Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Pliegue de Proteína/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/metabolismo , Proteínas Bacterianas/química , Bacterias Gramnegativas/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/química , Bacterias Grampositivas/efectos de los fármacos , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
8.
J Med Microbiol ; 67(5): 669-675, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29533172

RESUMEN

Purpose. In this field trial of rapid blood culture identification (BCID), we aimed to determine whether the improved speed and accuracy of specific BCID predicted in our earlier pilot study could be obtained in regional hospitals by deploying a multiplex PCR FilmArray (Biomerieux, France) capability in their laboratories.Methods. We trained local hospital laboratory staff to operate the FilmArray equipment and act on the results. To do this, we integrated the multiplex PCR into the standard laboratory blood culture workflow and reporting procedure.Results. Of 100 positive blood culture episodes, BCID FilmArray results were correct in all 42 significant monobacterial cultures, with a fully predictive identity in 38 (90.5 %) and a partial identity in another four (9.5 %). There was one major error; a false positive Pseudomonas aeruginosa. The minor errors were the detection of one methicillin-resistant Staphylococcus aureus, which proved to be a methicillin-sensitive S. aureus mixed with a methicillin-resistant coagulase-negative staphylococcus, five false negative coagulase-negative staphylococci and one false negative streptococcus species. We found that 41/49 (84 %) clinically significant mono- and polymicrobial culture results were fully predictive of culture-based identification to bacterial species level at a mean of 1.15 days after specimen collection.Conclusions. There was a reduction of 1.21 days in the time taken to produce a definitive BCID compared to the previous year, translating into earlier communication of more specific blood culture results to the treating physician. Reduced time to definitive blood culture results has a direct benefit for isolated Australian communities at great distances from specialist hospital services.

9.
Int J Antimicrob Agents ; 48(4): 401-8, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27516227

RESUMEN

The pathogenic bacteria Chlamydia trachomatis, Neisseria gonorrhoeae and Neisseria meningitidis express the surface-exposed macrophage infectivity potentiator (MIP)-like protein, which plays a role in their pathogenicity. MIP exhibits a peptidyl-prolyl isomerase (PPIase) activity that is inhibited by rapamycin and FK506. In this study, pipecolic acid derivatives were tested for their activity against the chlamydial and neisserial MIP. Two MIP inhibitors were identified, PipN3 and PipN4, that affected the developmental cycle of C. trachomatis in HeLa cells. Furthermore, we could show that deletion of neisserial MIP or addition of the two MIP inhibitors affected the survival of N. gonorrhoeae in the presence of neutrophils. Furthermore, both compounds inhibited the adherence, invasion and/or survival of N. meningitidis in epithelial cells. These results confirm the importance of MIP-like proteins in infection and indicate the relevance of pipecolic acid derivatives as antimicrobials against C. trachomatis, N. gonorrhoeae and N. meningitidis.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Chlamydia trachomatis/patogenicidad , Neisseria gonorrhoeae/patogenicidad , Neisseria meningitidis/patogenicidad , Factores de Virulencia/antagonistas & inhibidores , Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Chlamydia trachomatis/inmunología , Chlamydia trachomatis/metabolismo , Técnicas de Inactivación de Genes , Humanos , Viabilidad Microbiana/efectos de los fármacos , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/metabolismo , Neisseria gonorrhoeae/fisiología , Neisseria meningitidis/inmunología , Neisseria meningitidis/metabolismo , Neisseria meningitidis/fisiología , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA