Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 19(1): 559, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30064354

RESUMEN

BACKGROUND: Multi-parent advanced generation intercross (MAGIC) populations are a newly established tool to dissect quantitative traits. We developed the high resolution MAGIC wheat population WM-800, consisting of 910 F4:6 lines derived from intercrossing eight recently released European winter wheat cultivars. RESULTS: Genotyping WM-800 with 7849 SNPs revealed a low mean genetic similarity of 59.7% between MAGIC lines. WM-800 harbours distinct genomic regions exposed to segregation distortion. These are mainly located on chromosomes 2 to 6 of the wheat B genome where founder specific DNA segments were positively or negatively selected. This suggests adaptive selection of individual founder alleles during population development. The application of a genome-wide association study identified 14 quantitative trait loci (QTL) controlling plant height in WM-800, including the known semi-dwarf genes Rht-B1 and Rht-D1 and a potentially novel QTL on chromosome 5A. Additionally, epistatic effects controlled plant height. For example, two loci on chromosomes 2B and 7B gave rise to an additive epistatic effect of 13.7 cm. CONCLUSION: The present study demonstrates that plant height in the MAGIC-WHEAT population WM-800 is mainly determined by large-effect QTL and di-genic epistatic interactions. As a proof of concept, our study confirms that WM-800 is a valuable tool to dissect the genetic architecture of important agronomic traits.


Asunto(s)
Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Triticum/genética , Cruzamientos Genéticos , Efecto Fundador , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/anatomía & histología
2.
Plants (Basel) ; 11(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559621

RESUMEN

The multi-parent-advanced-generation-intercross (MAGIC) population WM-800 was developed by intercrossing eight modern winter wheat cultivars to enhance the genetic diversity present in breeding populations. We cultivated WM-800 during two seasons in seven environments under two contrasting nitrogen fertilization treatments. WM-800 lines exhibited highly significant differences between treatments, as well as high heritabilities among the seven agronomic traits studied. The highest-yielding WM-line achieved an average yield increase of 4.40 dt/ha (5.2%) compared to the best founder cultivar Tobak. The subsequent genome-wide-association-study (GWAS), which was based on haplotypes, located QTL for seven agronomic traits including grain yield. In total, 40, 51, and 46 QTL were detected under low, high, and across nitrogen treatments, respectively. For example, the effect of QYLD_3A could be associated with the haplotype allele of cultivar Julius increasing yield by an average of 4.47 dt/ha (5.2%). A novel QTL on chromosome 2B exhibited pleiotropic effects, acting simultaneously on three-grain yield components (ears-per-square-meter, grains-per-ear, and thousand-grain-weight) and plant-height. These effects may be explained by a member of the nitrate-transporter-1 (NRT1)/peptide-family, TaNPF5.34, located 1.05 Mb apart. The WM-800 lines and favorable QTL haplotypes, associated with yield improvements, are currently implemented in wheat breeding programs to develop advanced nitrogen-use efficient wheat cultivars.

3.
Sci Adv ; 7(24)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34117061

RESUMEN

The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.

4.
Sci Adv ; 6(24): eaay4897, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32582844

RESUMEN

The genetics underlying heterosis, the difference in performance of crosses compared with midparents, is hypothesized to vary with relatedness between parents. We established a unique germplasm comprising three hybrid wheat sets differing in the degree of divergence between parents and devised a genetic distance measure giving weight to heterotic loci. Heterosis increased steadily with heterotic genetic distance for all 1903 hybrids. Midparent heterosis, however, was significantly lower in the hybrids including crosses between elite and exotic lines than in crosses among elite lines. The analysis of the genetic architecture of heterosis revealed this to be caused by a higher portion of negative dominance and dominance-by-dominance epistatic effects. Collectively, these results expand our understanding of heterosis in crops, an important pillar toward global food security.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA