Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000150

RESUMEN

Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.


Asunto(s)
Vesículas Extracelulares , Enfermedades Neuroinflamatorias , Vesículas Extracelulares/metabolismo , Humanos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Animales , Comunicación Celular , Encéfalo/metabolismo , Encéfalo/patología , Células Madre Mesenquimatosas/metabolismo , Barrera Hematoencefálica/metabolismo , Inflamación/metabolismo , Inflamación/patología
2.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39337560

RESUMEN

The emerging role of extracellular vesicles (EVs) in central nervous system (CNS) diseases is gaining significant interest, particularly their applications as diagnostic biomarkers and therapeutic agents. EVs are involved in intercellular communication and are secreted by all cell types. They contain specific markers and a diverse cargo such as proteins, lipids, and nucleic acids, reflecting the physiological and pathological state of their originating cells. Their reduced immunogenicity and ability to cross the blood-brain barrier make them promising candidates for both biomarkers and therapeutic agents. In the context of CNS diseases, EVs have shown promise as biomarkers isolable from different body fluids, providing a non-invasive method for diagnosing CNS diseases and monitoring disease progression. This makes them useful for the early detection and monitoring of diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, where specific alterations in EVs content can be detected. Additionally, EVs derived from stem cells show potential in promoting tissue regeneration and repairing damaged tissues. An evaluation has been conducted on the current clinical trials studying EVs for CNS diseases, focusing on their application, treatment protocols, and obtained results. This review aims to explore the potential of EVs as diagnostic markers and therapeutic carriers for CNS diseases, highlighting their significant advantages and ongoing clinical trials evaluating their efficacy.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Enfermedades Neurodegenerativas , Humanos , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/diagnóstico , Animales , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/diagnóstico , Barrera Hematoencefálica/metabolismo
3.
J Neuroinflammation ; 20(1): 1, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36593485

RESUMEN

Chronic hyperammonemia, a main contributor to hepatic encephalopathy (HE), leads to neuroinflammation which alters neurotransmission leading to cognitive impairment. There are no specific treatments for the neurological alterations in HE. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) reduce neuroinflammation in some pathological conditions. The aims were to assess if treatment of hyperammonemic rats with EVs from MSCs restores cognitive function and analyze the underlying mechanisms. EVs injected in vivo reach the hippocampus and restore performance of hyperammonemic rats in object location, object recognition, short-term memory in the Y-maze and reference memory in the radial maze. Hyperammonemic rats show reduced TGFß levels and membrane expression of TGFß receptors in hippocampus. This leads to microglia activation and reduced Smad7-IkB pathway, which induces NF-κB nuclear translocation in neurons, increasing IL-1ß which alters AMPA and NMDA receptors membrane expression, leading to cognitive impairment. These effects are reversed by TGFß in the EVs from MSCs, which activates TGFß receptors, reducing microglia activation and NF-κB nuclear translocation in neurons by normalizing the Smad7-IkB pathway. This normalizes IL-1ß, AMPA and NMDA receptors membrane expression and, therefore, cognitive function. EVs from MSCs may be useful to improve cognitive function in patients with hyperammonemia and minimal HE.


Asunto(s)
Vesículas Extracelulares , Hiperamonemia , Células Madre Mesenquimatosas , Ratas , Animales , Ratas Wistar , Inflamación/metabolismo , Enfermedades Neuroinflamatorias , Receptores de N-Metil-D-Aspartato/metabolismo , Hiperamonemia/terapia , Hiperamonemia/metabolismo , FN-kappa B/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Hipocampo/metabolismo , Cognición , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Neurochem Res ; 47(7): 2016-2031, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35386048

RESUMEN

Chronic hyperammonemia alters membrane expression of AMPA and NMDA receptors subunits in hippocampus leading to impaired memory and learning. Increasing extracellular cGMP normalizes these alterations. However, it has not been studied whether hyperammonemia alters the function of AMPA and NMDA receptors. The aims of this work were: (1) assess if hyperammonemia alters AMPA and NMDA receptors function; (2) analyze if extracellular cGMP reverses these alterations. A multielectrode array device was used to stimulate Schäffer collaterals and record postsynaptic currents in the CA1 region in hippocampal slices from control and hyperammonemic rats and analyze different features of the excitatory postsynaptic potentials. Hyperammonemia reduces the amplitude and delays appearance of AMPA EPSPs, whereas increases amplitude, hyperpolarization, depolarization and desensitization area of the NMDA EPSPs. These alterations in AMPA and NMDA function are accentuated as the stimulation intensity increases. Adding extracellular cGMP reverses the alteration in amplitude in both, AMPA and NMDA EPSPs. In control slices extracellular cGMP decreases the AMPA and NMDA EPSPs amplitude and delays the response of neurons and the return to the resting potential at all stimulation intensities. In conclusion, hyperammonemia decreases the AMPA response, whereas increases the NMDA response and extracellular cGMP reverses these alterations.


Asunto(s)
Hiperamonemia , Receptores de N-Metil-D-Aspartato , Animales , GMP Cíclico/metabolismo , Hipocampo/metabolismo , Hiperamonemia/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
5.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293192

RESUMEN

Minimal hepatic encephalopathy (MHE) is associated with changes in the immune system including an increased pro-inflammatory environment and altered differentiation of CD4+ T lymphocytes. The mechanisms remain unknown. Changes in extracellular vesicle (EV) cargo including proteins and miRNAs could play a main role as mediators of immune system changes associated with MHE. The aim was to assess whether plasma EVs from MHE patients played a role in inducing the pro-inflammatory environment and altered differentiation of CD4+ T lymphocyte subtypes in MHE patients. We characterized the miRNA and protein cargo of plasma EVs from 50 cirrhotic patients (27 without and 23 with MHE) and 24 controls. CD4+ T cells from the controls were cultured with plasma EVs from the three groups of study, and the cytokine release and differentiation to CD4+ T-cell subtypes were assessed. Plasma EVs from MHE patients had altered miRNA and protein contents, and were enriched in inflammatory factors compared to the controls and patients without MHE. EVs from MHE patients modulated the expression of pro-inflammatory IL-17, IL-21, and TNF-α and anti-inflammatory TGF-ß in cultured CD4+ T lymphocytes, and increased the proportion of Th follicular and Treg cells and the activation of Th17 cells. In conclusion, plasma EVs could play an important role in the induction of immune changes observed in MHE.


Asunto(s)
Vesículas Extracelulares , Encefalopatía Hepática , MicroARNs , Humanos , Interleucina-17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Linfocitos T Colaboradores-Inductores , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cirrosis Hepática/metabolismo
6.
J Hepatol ; 73(3): 582-592, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30654069

RESUMEN

BACKGROUND & AIMS: Chronic hyperammonemia induces neuroinflammation which mediates cognitive impairment. How hyperammonemia induces neuroinflammation remains unclear. We aimed to assess whether: chronic hyperammonemia induces peripheral inflammation, and whether this then contributes to neuroinflammation, altered neurotransmission and impaired spatial learning - before assessing whether this neuroinflammation and impairment is reversible following hyperammonemia elimination or treatment of peripheral inflammation with anti-TNF-α. METHODS: Chronic hyperammonemia was induced by feeding rats an ammonia-containing diet. Peripheral inflammation was analyzed by measuring PGE2, TNF-α, IL-6 and IL-10. We tested whether chronic anti-TNF-α treatment improves peripheral inflammation, neuroinflammation, membrane expression of glutamate receptors in the hippocampus and spatial learning. RESULTS: Hyperammonemic rats show a rapid and reversible induction of peripheral inflammation, with increased pro-inflammatory PGE2, TNF-α and IL-6, followed at around 10 days by reduced anti-inflammatory IL-10. Peripheral anti-TNF-α treatment prevents peripheral inflammation induction and the increase in IL-1b and TNF-α and microglia activation in hippocampus of the rats, which remain hyperammonemic. This is associated with prevention of the altered membrane expression of glutamate receptors and of the impairment of spatial memory assessed in the radial and Morris water mazes. CONCLUSIONS: This report unveils a new mechanism by which chronic hyperammonemia induces neurological alterations: induction of peripheral inflammation. This suggests that reducing peripheral inflammation by safe procedures would improve cognitive function in patients with minimal hepatic encephalopathy. LAY SUMMARY: This article unveils a new mechanism by which chronic hyperammonemia induces cognitive impairment in rats: chronic hyperammonemia per se induces peripheral inflammation, which mediates many of its effects on the brain, including induction of neuroinflammation, which alters neurotransmission, leading to cognitive impairment. It is also shown that reducing peripheral inflammation by treating rats with anti-TNF-α, which does not cross the blood-brain barrier, prevents hyperammonemia-induced neuroinflammation, alterations in neurotransmission and cognitive impairment.


Asunto(s)
Antiinflamatorios/administración & dosificación , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hiperamonemia/complicaciones , Infliximab/administración & dosificación , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Disfunción Cognitiva/sangre , Modelos Animales de Enfermedad , Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inflamación/metabolismo , Masculino , Memoria/efectos de los fármacos , Ratas , Ratas Wistar , Aprendizaje Espacial/efectos de los fármacos , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/sangre
7.
J Neuroinflammation ; 17(1): 269, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917219

RESUMEN

BACKGROUND: Chronic hyperammonemia induces neuroinflammation in cerebellum, with glial activation and enhanced activation of the TNFR1-NF-kB-glutaminase-glutamate-GABA pathway. Hyperammonemia also increases glycinergic neurotransmission. These alterations contribute to cognitive and motor impairment. Activation of glycine receptors is reduced by extracellular cGMP, which levels are reduced in cerebellum of hyperammonemic rats in vivo. We hypothesized that enhanced glycinergic neurotransmission in hyperammonemic rats (1) contributes to induce neuroinflammation and glutamatergic and GABAergic neurotransmission alterations; (2) is a consequence of the reduced extracellular cGMP levels. The aims were to assess, in cerebellum of hyperammonemic rats, (a) whether blocking glycine receptors with the antagonist strychnine reduces neuroinflammation; (b) the cellular localization of glycine receptor; (c) the effects of blocking glycine receptors on the TNFR1-NF-kB-glutaminase-glutamate-GABA pathway and microglia activation; (d) whether adding extracellular cGMP reproduces the effects of strychnine. METHODS: We analyzed in freshly isolated cerebellar slices from control or hyperammonemic rats the effects of strychnine on activation of microglia and astrocytes, the content of TNFa and IL1b, the surface expression of ADAM17, TNFR1 and transporters, the phosphorylation levels of ERK, p38 and ADAM17. The cellular localization of glycine receptor was assessed by immunofluorescence. We analyzed the content of TNFa, IL1b, HMGB1, glutaminase, and the level of TNF-a mRNA and NF-κB in Purkinje neurons. Extracellular concentrations of glutamate and GABA were performed by in vivo microdialysis in cerebellum. We tested whether extracellular cGMP reproduces the effects of strychnine in ex vivo cerebellar slices. RESULTS: Glycine receptors are expressed mainly in Purkinje cells. In hyperammonemic rats, enhanced glycinergic neurotransmission leads to reduced membrane expression of ADAM17, resulting in increased surface expression and activation of TNFR1 and of the associated NF-kB pathway. This increases the expression in Purkinje neurons of TNFa, IL-1b, HMGB1, and glutaminase. Increased glutaminase activity leads to increased extracellular glutamate, which increases extracellular GABA. Increased extracellular glutamate and HMGB1 potentiate microglial activation. Blocking glycine receptors with strychnine or extracellular cGMP completely prevents the above pathway in hyperammonemic rats. CONCLUSIONS: Glycinergic neurotransmission modulates neuroinflammation. Enhanced glycinergic neurotransmission in hyperammonemia would be due to reduced extracellular cGMP. These results shed some light on possible new therapeutic target pathways for pathologies associated to neuroinflammation.


Asunto(s)
Cerebelo/efectos de los fármacos , Glicinérgicos/farmacología , Hiperamonemia/metabolismo , Receptores de Glicina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Estricnina/farmacología , Transmisión Sináptica/efectos de los fármacos , Proteína ADAM17/metabolismo , Animales , Cerebelo/metabolismo , GMP Cíclico/metabolismo , FN-kappa B/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Ratas , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transmisión Sináptica/fisiología
8.
FASEB J ; 33(9): 9913-9928, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162953

RESUMEN

Activated microglia and increased brain IL-1ß play a main role in cognitive impairment in much pathology. We studied the role of IL-1ß in neuroinflammation-induced impairment of the following different types of learning and memory: novel object recognition (NOR), novel object location (NOL), spatial learning, reference memory (RM), and working memory (WM). All these processes are impaired in hyperammonemic rats. We assessed which of these types of learning and memory are restored by blocking the IL-1 receptor in vivo in hyperammonemic rats and the possible mechanisms involved. Blocking the IL-1 receptor reversed microglial activation in the hippocampus, perirhinal cortex, and prefrontal cortex but not in the postrhinal cortex. This was associated with the restoration of NOR and WM but not of tasks involving a spatial component (NOL and RM). This suggests that IL-1ß would be involved in neuroinflammation-induced nonspatial memory impairment, whereas spatial memory impairment would be IL-1ß-independent and would be mediated by other proinflammatory factors.-Taoro-González, L., Cabrera-Pastor, A., Sancho-Alonso, M., Arenas, Y. M., Meseguer-Estornell, F., Balzano, T., ElMlili, N., Felipo, V. Differential role of interleukin-1ß in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats.


Asunto(s)
Hiperamonemia/inducido químicamente , Inflamación/inducido químicamente , Interleucina-1beta/metabolismo , Memoria/efectos de los fármacos , Amoníaco/administración & dosificación , Amoníaco/toxicidad , Alimentación Animal , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Masculino , Microglía/efectos de los fármacos , Microglía/fisiología , Subunidades de Proteína , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
9.
J Transl Med ; 17(1): 293, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462286

RESUMEN

BACKGROUND: Minimal hepatic encephalopathy (MHE) in cirrhotic patients is associated with specific changes in parameters of the immune system reflecting a more pro-inflammatory environment than in patients without MHE. The aims of this work were to assess the effects of rifaximin treatment of cirrhotic patients with MHE on: (1) MHE; (2) intermediate (CD14++CD16+) pro-inflammatory monocytes; (3) expression of early activation marker CD69 in T lymphocytes; (4) autoreactive CD4+CD28- T lymphocytes; (5) differentiation of CD4+ T lymphocytes to Th follicular and Th22; (6) serum IgG levels; and (7) levels of some pro-inflammatory cytokines. METHODS: These parameters were measured by immunophenotyping and cytokine profile analysis in 30 controls without liver disease, 30 cirrhotic patients without MHE and 22 patients with MHE. Patients with MHE were treated with rifaximin and the same parameters were measured at 3 and 6 months of treatment. We assessed if changes in these parameters are different in patients who improve MHE (responders) and those who remain in MHE (non-responders). RESULTS: Rifaximin improved MHE in 59% of patients with MHE. In these responder patients rifaximin normalized all alterations in the immune system measured while in non-responders it normalizes only IL-6, CCL20, and differentiation of T lymphocytes to Th22. Non-responder patients do not show increased expression of CD69 before treatment. CONCLUSIONS: Rifaximin normalizes changes in the immune system in patients who improve MHE but not in non-responders. Some alterations before treatment are different in responders and non-responders. Understanding these differences may identify predictors of the response of MHE to rifaximin.


Asunto(s)
Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/inmunología , Inmunofenotipificación , Rifaximina/uso terapéutico , Citocinas/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Encefalopatía Hepática/sangre , Humanos , Inmunoglobulina G/sangre , Monocitos/efectos de los fármacos , Psicometría , Rifaximina/farmacología , Linfocitos T/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 286-295, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29107806

RESUMEN

Hyperammonemia contributes to altered neurotransmission and cognition in patients with hepatic encephalopathy. Hyperammonemia in rats affects differently high- and low-affinity AMPA receptors (AMPARs) in cerebellum. We hypothesized that hyperammonemia would alter differently membrane expression of AMPARs GluA1 and GluA2 subunits by altering its phosphorylation. This work aims were: 1) assess if hyperammonemia alters GluA1 and GluA2 subunits membrane expression in cerebellum and 2) analyze the underlying mechanisms. Hyperammonemia reduces membrane expression of GluA2 and enhances membrane expression of GluA1 in vivo. We show that changes in GluA2 and GluA1 membrane expression in hyperammonemia would be due to enhanced NMDA receptors activation which reduces cGMP levels and phosphodiesterase 2 (PDE2) activity, resulting in increased cAMP levels. This leads to increased protein kinase A (PKA) activity which activates phospholipase C (PLC) and protein kinase C (PKC) thus increasing phosphorylation of GluA2 in Ser880, which reduces GluA2 membrane expression, and phosphorylation of GluA1 in Ser831, which increases GluA1 membrane expression. Blocking NMDA receptors or inhibiting PKA, PLC or PKC normalizes GluA2 and GluA1 phosphorylation and membrane expression in hyperammonemic rats. Altered GluA2 and GluA1 membrane expression would alter signal transduction which may contribute to cognitive and motor alterations in hyperammonemia and hepatic encephalopathy.


Asunto(s)
Membrana Celular/metabolismo , Hiperamonemia/genética , Receptores AMPA/genética , Animales , Membrana Celular/patología , Enfermedad Crónica , Encefalopatía Hepática/genética , Encefalopatía Hepática/metabolismo , Encefalopatía Hepática/patología , Hiperamonemia/metabolismo , Hiperamonemia/patología , Masculino , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Transducción de Señal/genética , Transmisión Sináptica/genética
11.
J Neuroinflammation ; 15(1): 36, 2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422059

RESUMEN

BACKGROUND: Hyperammonemic rats reproduce the cognitive alterations of patients with hepatic encephalopathy, including altered spatial memory, attributed to altered membrane expression of AMPA receptor subunits in hippocampus. Neuroinflammation mediates these cognitive alterations. We hypothesized that hyperammonemia-induced increase in IL-1ß in hippocampus would be responsible for the altered GluA1 and GluA2 membrane expression. The aims of this work were to (1) assess if increased IL-1ß levels and activation of its receptor are responsible for the changes in GluA1 and/or GluA2 membrane expression in hyperammonemia and (2) identify the mechanisms by which activation of IL-1 receptor leads to altered membrane expression of GluA1 and GluA2. METHODS: We analyzed in hippocampal slices from control and hyperammonemic rat membrane expression of AMPA receptors using the BS3 cross-linker and phosphorylation of the GluA1 and GluA2 subunits using phosphor-specific antibodies. The IL-1 receptor was blocked with IL-Ra, and the signal transduction pathways involved in modulation of membrane expression of GluA1 and GluA2 were analyzed using inhibitors of key steps. RESULTS: Hyperammonemia reduces GluA1 and increases GluA2 membrane expression and reduces phosphorylation of GluA1 at Ser831 and of GluA2 at Ser880. Hyperammonemia increases IL-1ß, enhancing activation of IL-1 receptor. This leads to activation of Src. The changes in membrane expression of GluA1 and GluA2 are reversed by blocking the IL-1 receptor with IL-1Ra or by inhibiting Src with PP2. After Src activation, the pathways for GluA2 and GluA1 diverge. Src increases phosphorylation of GluN2B at Tyr14721 and membrane expression of GluN2B in hyperammonemic rats, leading to activation of MAP kinase p38, which binds to and reduces phosphorylation at Thr560 and activity of PKCζ, resulting in reduced phosphorylation at Ser880 and enhanced membrane expression of GluA2. Increased Src activity in hyperammonemic rats also activates PKCδ which enhances phosphorylation of GluN2B at Ser1303, reducing membrane expression of CaMKII and phosphorylation at Ser831 and membrane expression of GluA1. CONCLUSIONS: This work identifies two pathways by which neuroinflammation alters glutamatergic neurotransmission in hippocampus. The steps of the pathways identified could be targets to normalize neurotransmission in hyperammonemia and other pathologies associated with increased IL-1ß by acting, for example, on p38 or PKCδ. IL-1ß alters membrane expression of GluA1 and GluA2 AMPA receptor subunits by two difrerent mechanisms in the hippocampus of hyperammonemic rats.


Asunto(s)
Membrana Celular/metabolismo , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Receptores AMPA/biosíntesis , Receptores Tipo I de Interleucina-1/metabolismo , Acetatos/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Expresión Génica , Hipocampo/efectos de los fármacos , Hiperamonemia/inducido químicamente , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Masculino , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores Tipo I de Interleucina-1/antagonistas & inhibidores
12.
Brain Behav Immun ; 69: 386-398, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29288802

RESUMEN

Hyperammonemia is a main contributor to cognitive impairment and motor in-coordination in patients with hepatic encephalopathy. Hyperammonemia-induced neuroinflammation mediates the neurological alterations in hepatic encephalopathy. Intracerebral administration of extracellular cGMP restores some but not all types of cognitive impairment. Motor in-coordination, is mainly due to increased GABAergic tone in cerebellum. We hypothesized that extracellular cGMP would restore motor coordination in hyperammonemic rats by normalizing GABAergic tone in cerebellum and that this would be mediated by reduction of neuroinflammation. The aims of this work were to assess whether chronic intracerebral administration of cGMP to hyperammonemic rats: 1) restores motor coordination; 2) reduces neuroinflammation in cerebellum; 3) reduces extracellular GABA levels and GABAergic tone in cerebellum; and also 4) to provide some advance in the understanding on the molecular mechanisms involved. The results reported show that rats with chronic hyperammonemia show neuroinflammation in cerebellum, including microglia and astrocytes activation and increased levels of IL-1b and TNFa and increased membrane expression of the TNFa receptor. This is associated with increased glutaminase expression and extracellular glutamate, increased amount of the GABA transporter GAT-3 in activated astrocytes, increased extracellular GABA in cerebellum and motor in-coordination. Chronic intracerebral administration of extracellular cGMP to rats with chronic hyperammonemia reduces neuroinflammation, including microglia and astrocytes activation and membrane expression of the TNFa receptor. This is associated with reduced nuclear NF-κB, glutaminase expression and extracellular glutamate, reduced amount of the GABA transporter GAT-3 in activated astrocytes and reduced extracellular GABA in cerebellum and restoration of motor coordination. The data support that extracellular cGMP restores motor coordination in hyperammonemic rats by reducing microglia activation and neuroinflammation, leading to normalization of extracellular glutamate and GABA levels in cerebellum and of motor coordination.


Asunto(s)
Cerebelo/metabolismo , GMP Cíclico/farmacología , Hiperamonemia/metabolismo , Inflamación/metabolismo , Destreza Motora/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Astrocitos/metabolismo , Bicuculina/farmacología , Cerebelo/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Glutaminasa/metabolismo , Masculino , Microglía/metabolismo , Destreza Motora/efectos de los fármacos , Ratas , Ratas Wistar
13.
Neurochem Res ; 42(3): 788-794, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27321307

RESUMEN

Pruritus is a common symptom in chronic liver diseases, which may also alter thermal sensitivity. The underlying mechanisms remain unclear and treatments are not satisfactory. Portal-systemic shunting has been proposed to alter thermal sensitivity in cirrhotics. Inflammation-induced enhanced activity of the Transient Receptor Potential Vanilloid 1 (TRPV1) may contribute to pruritus and thermal hyperalgesia. Sildenafil reduces neuroinflammation in portacaval shunt (PCS) rats. The aims were to assess whether: (1) PCS rats show enhanced scratching or thermal sensitivity; (2) TRPV1 activity is enhanced in PCS rats; (3) treatment with sildenafil reduces TRPV1 activation, scratching and thermal hyperalgesia. Rats were treated with sildenafil beginning 3 weeks after surgery. The number of scratches performed were counted. Thermal hyperalgesia was analyzed using the Hargreaves' Plantar Test. TRPV1 activation by measuring the increase in Ca2+ induced by capsaicin in dorsal root ganglia neurons. PCS rats show enhanced scratching behavior, reaching 66 ± 5 scratches/h (p < 0.01) at 21 days after surgery, while controls show 37 ± 2 scratches/h. PCS rats show thermal hyperalgesia. Paw withdrawal latency was reduced (p < 0.05) to 10 ± 1 s compared to controls (21 ± 2 s). Capsaicin-induced calcium increase was higher in dorsal root ganglia cultures from PCS rats, indicating TRPV1functional increase. PCS rats show enhanced scratching behavior and thermal sensitivity and are a good model to study these alterations in chronic liver diseases. Enhanced sensitivity and activity of TRPV1 channel underlies these alterations. Treatment with sildenafil reduces TRPV1 channel sensitivity and activity and normalizes scratching behavior and thermal sensitivity.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 5/farmacología , Derivación Portocava Quirúrgica , Prurito/tratamiento farmacológico , Citrato de Sildenafil/farmacología , Animales , Calcio/metabolismo , Ganglios Espinales/citología , Calor , Hiperalgesia/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Prurito/fisiopatología , Ratas Wistar , Citrato de Sildenafil/uso terapéutico , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo
14.
J Neurochem ; 137(4): 539-48, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26875688

RESUMEN

The glutamate-nitric oxide (NO)-cGMP pathway modulates some forms of learning. How glycine modulates this pathway is unclear. Glycine could modulate the pathway biphasically, enhancing its function through NMDA receptor activation or reducing it through glycine receptor activation. Chronic hyperammonemia impairs the glutamate-NO-cGMP pathway in the cerebellum and induces cognitive impairment. The possible alterations in hyperammonemia of glycinergic neurotransmission and of glutamate-NO-cGMP pathway modulation by glycine remain unknown. The aims were to assess, by in vivo microdialysis in cerebellum: (i) the effects of different glycine concentrations, administered through the microdialysis probe, on the glutamate-NO-cGMP pathway function; (ii) the effects of tonic glycine receptors activation on the pathway function, by blocking them with strychnine; (iii) whether hyperammonemia alters the pathway modulation by glycine; (iv) and whether hyperammonemia alters extracellular glycine concentration and/or glycine receptor membrane expression. In control rats, low glycine levels reduce the pathway function, likely by activating glycine receptors, while 20 µM glycine enhances the pathway function, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine did not reduce the pathway function, but enhanced it when administered at 1-20 µM. Hyperammonemia reduces extracellular glycine concentration by approximately 50% and glycine receptor membrane expression. However, tonic glycine receptor activation seems to be enhanced in hyperammonemic rats, as indicated by the larger increase in extracellular cGMP induced by strychnine. These data show that glycine modulates the glutamate-NO-cGMP pathway biphasically and that hyperammonemia strongly alters glycinergic neurotransmission and modulation by glycine of the glutamate-NO-cGMP pathway. These alterations may contribute to the cerebellar aspects of cognitive alterations in hyperammonemia. The findings reported in this study show that hyperammonemia alters glycinergic neurotransmission and the glutamate-NO-cGMP pathway modulation by glycine. In control rats, low glycine levels reduced the pathway function, likely by activating glycine receptors, while 20 µM glycine enhanced the pathway, likely by enhancing NMDA receptor activation. In hyperammonemic rats, glycine (administered at 1-20 µM) enhances the pathway, likely by activating NMDA receptors.


Asunto(s)
Cerebelo/metabolismo , GMP Cíclico/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Hiperamonemia/metabolismo , Óxido Nítrico/metabolismo , Animales , Cerebelo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Glicina/farmacología , Masculino , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
15.
J Neuroinflammation ; 13: 41, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26883214

RESUMEN

BACKGROUND: Patients with liver cirrhosis and minimal hepatic encephalopathy (MHE) show mild cognitive impairment and spatial learning dysfunction. Hyperammonemia acts synergistically with inflammation to induce cognitive impairment in MHE. Hyperammonemia-induced neuroinflammation in hippocampus could contribute to spatial learning impairment in MHE. Two main aims of this work were: (1) to assess whether chronic hyperammonemia increases inflammatory factors in the hippocampus and if this is associated with microglia and/or astrocytes activation and (2) to assess whether hyperammonemia-induced neuroinflammation in the hippocampus is associated with altered membrane expression of glutamate and GABA receptors and spatial learning impairment. There are no specific treatments for cognitive alterations in patients with MHE. A third aim was to assess whether treatment with sulforaphane enhances endogenous the anti-inflammatory system, reduces neuroinflammation in the hippocampus of hyperammonemic rats, and restores spatial learning and if normalization of receptor membrane expression is associated with learning improvement. METHODS: We analyzed the following in control and hyperammonemic rats, treated or not with sulforaphane: (1) microglia and astrocytes activation by immunohistochemistry, (2) markers of pro-inflammatory (M1) (IL-1ß, IL-6) and anti-inflammatory (M2) microglia (Arg1, YM-1) by Western blot, (3) membrane expression of GABA, AMPA, and NMDA receptors using the BS3 cross-linker, and (4) spatial learning using the radial maze. RESULTS: The results reported show that hyperammonemia induces astrocytes and microglia activation in the hippocampus, increasing pro-inflammatory cytokines IL-1ß and IL-6. This is associated with altered membrane expression of AMPA, NMDA, and GABA receptors which would be responsible for altered neurotransmission and impairment of spatial learning in the radial maze. Treatment with sulforaphane promotes microglia differentiation from pro-inflammatory M1 to anti-inflammatory M2 phenotype and reduces activation of astrocytes in hyperammonemic rats. This reduces neuroinflammation, normalizes membrane expression of glutamate and GABA receptors, and restores spatial learning in hyperammonemic rats. CONCLUSIONS: Hyperammonemia-induced neuroinflammation impairs glutamatergic and GABAergic neurotransmission by altering membrane expression of glutamate and GABA receptors, resulting in impaired spatial learning. Sulforaphane reverses all these effects. Treatment with sulforaphane could be useful to improve cognitive function in cirrhotic patients with minimal or clinical hepatic encephalopathy.


Asunto(s)
Antiinflamatorios/uso terapéutico , Encefalitis/etiología , Hipocampo/metabolismo , Hiperamonemia/complicaciones , Isotiocianatos/uso terapéutico , Discapacidades para el Aprendizaje , Receptores de Neurotransmisores/metabolismo , Animales , Antiinflamatorios/farmacología , Peso Corporal/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/patología , Hiperamonemia/patología , Técnicas In Vitro , Isotiocianatos/farmacología , Discapacidades para el Aprendizaje/tratamiento farmacológico , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Ratas , Ratas Wistar , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Sulfóxidos
16.
J Neuroinflammation ; 13(1): 245, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27623772

RESUMEN

BACKGROUND: Peripheral inflammation contributes to the neurological alterations in hepatic encephalopathy (HE). Neuroinflammation and altered GABAergic neurotransmission mediate cognitive and motor alterations in rats with HE. It remains unclear (a) if neuroinflammation and neurological impairment in HE are a consequence of peripheral inflammation and (b) how neuroinflammation impairs GABAergic neurotransmission. The aims were to assess in rats with HE whether reducing peripheral inflammation with anti-TNF-α (1) prevents cognitive impairment and motor in-coordination, (2) normalizes neuroinflammation and extracellular GABA in the cerebellum and also (3) advances the understanding of mechanisms linking neuroinflammation and increased extracellular GABA. METHODS: Rats with HE due to portacaval shunt (PCS) were treated with infliximab. Astrocytes and microglia activation and TNF-α and IL-1ß were analyzed by immunohistochemistry. Membrane expression of the GABA transporters GAT-3 and GAT-1 was analyzed by cross-linking with BS3. Extracellular GABA was analyzed by microdialysis. Motor coordination was tested using the beam walking and learning ability using the Y maze task. RESULTS: PCS rats show peripheral inflammation, activated astrocytes, and microglia and increased levels of TNF-α and IL-1ß. Membrane expression of GAT-3 and extracellular GABA are increased, leading to impaired motor coordination and learning ability. Infliximab reduces peripheral inflammation, microglia, and astrocyte activation and neuroinflammation and normalizes GABAergic neurotransmission, motor coordination, and learning ability. CONCLUSIONS: Neuroinflammation is associated with altered GABAergic neurotransmission and increased GAT-3 membrane expression and extracellular GABA (a); peripheral inflammation is a main contributor to the impairment of motor coordination and of the ability to learn the Y maze task in PCS rats (b); and reducing peripheral inflammation using safe procedures could be a new therapeutic approach to improve cognitive and motor function in patients with HE


Asunto(s)
Cerebelo/metabolismo , Encefalopatía Hepática/patología , Inflamación/tratamiento farmacológico , Infliximab/uso terapéutico , Discapacidades para el Aprendizaje/tratamiento farmacológico , Trastornos Psicomotores/tratamiento farmacológico , Ácido gamma-Aminobutírico/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , GMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Encefalopatía Hepática/complicaciones , Inflamación/etiología , Infliximab/farmacología , Discapacidades para el Aprendizaje/etiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos Psicomotores/etiología , Ratas , Ratas Wistar
17.
J Neuroinflammation ; 13(1): 83, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27090509

RESUMEN

BACKGROUND: Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. METHODS: We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. RESULTS: Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. CONCLUSIONS: Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/biosíntesis , Encefalopatía Hepática/metabolismo , Hiperamonemia/metabolismo , Microglía/metabolismo , Animales , Antiinflamatorios/farmacología , Western Blotting , Membrana Celular/metabolismo , Cerebelo , Modelos Animales de Enfermedad , Encefalopatía Hepática/complicaciones , Hiperamonemia/etiología , Hiperamonemia/fisiopatología , Inmunohistoquímica , Inflamación/metabolismo , Isotiocianatos/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Microdiálisis , Microglía/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Sulfóxidos , Ácido gamma-Aminobutírico/metabolismo
18.
Brain Behav Immun ; 57: 360-370, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27189036

RESUMEN

Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1ß, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors.


Asunto(s)
Disfunción Cognitiva/metabolismo , GMP Cíclico/farmacología , Hipocampo/metabolismo , Hiperamonemia/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Memoria a Corto Plazo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , GMP Cíclico/administración & dosificación , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hiperamonemia/complicaciones , Hiperamonemia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/etiología , Interleucina-1beta/efectos de los fármacos , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Ratas , Ratas Wistar , Receptores AMPA/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Factor de Necrosis Tumoral alfa/efectos de los fármacos
19.
J Neuroinflammation ; 12: 195, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26511444

RESUMEN

BACKGROUND: There are no specific treatments for the neurological alterations of cirrhotic patients with minimal hepatic encephalopathy (MHE). Rats with MHE due to portacaval shunt (PCS) show impaired spatial learning. The underlying mechanisms remain unknown. The aims of this work were to assess: (a) whether PCS rats show neuroinflammation in hippocampus, (b) whether treatment with sildenafil reduces neuroinflammation and restores spatial learning in PCS rats, and (c) analyze the underlying mechanisms. METHODS: Neuroinflammation was assessed by determining inflammatory markers by Western blot. Phosphorylation of MAP-kinase p38 was assessed by immunohistochemistry. Membrane expression of GABA and glutamate receptors was analyzed using BS3 cross-linker. Spatial learning was analyzed using the radial and Morris water mazes. To assess if sildenafil reverses the alterations, rats were treated with sildenafil in the drinking water. RESULTS: PCS rats show increased IL-1ß and TNF-α levels and phosphorylation (activity) of p38 in hippocampus. Membrane expression of subunits α1 of GABAA receptor and GluR2 of AMPA receptor are increased in PCS rats, while subunits GluR1 of AMPA receptors and NR1 and NR2a of NMDA receptors are reduced. PCS rats show reduced spatial learning in the radial and Morris water mazes. Sildenafil treatment normalizes IL-1ß and TNF-α levels, p38 phosphorylation, and membrane expression of GABAA, AMPA, and NMDA receptors and restores spatial learning. CONCLUSIONS: Increased IL-1ß alters GABAergic and glutamatergic neurotransmission in hippocampus and impairs spatial learning in rats with MHE. Sildenafil reduces neuroinflammation and restores learning. Phosphodiesterase-5 inhibitors may be useful to improve cognitive function in patients with MHE.


Asunto(s)
Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/psicología , Inflamación/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos , Citrato de Sildenafil/uso terapéutico , Vasodilatadores/uso terapéutico , Animales , Encefalopatía Hepática/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo , Activación de Macrófagos/efectos de los fármacos , Masculino , Microglía/efectos de los fármacos , Derivación Portocava Quirúrgica , Ratas , Ratas Wistar , Receptores de GABA/biosíntesis , Receptores de Glutamato/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Arch Biochem Biophys ; 536(2): 164-70, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23376587

RESUMEN

Patients with liver cirrhosis may present impaired sleep-wake and circadian rhythms, relative adrenal insufficiency and altered hypothalamus-pituitary-adrenal gland (HPA) axis. The underlying mechanisms remain unclear. Circadian rhythms are modulated by corticosteroids which secretion is regulated by HPA axis. Hyperammonemia alters circadian rhythms of activity and corticosterone in rats. The aims were: (1) assessing whether corticosterone alterations are responsible for altered circadian rhythm in hyperammonemia: (2) to shed light on the mechanism by which corticosterone circadian rhythm is altered in hyperammonemia. The effects of daily corticosterone injection at ZT10 on circadian rhythms of activity, plasma corticosterone, adreno-corticotropic hormone (ACTH) and hypothalamic corticotropic releasing hormone (CRH) were assessed in control and hyperammonemic rats. ACTH-induced corticosterone release was analyzed in cultured adrenal cells. Corticosterone injection restores the corticosterone peak in hyperammonemic rats and their activity and circadian rhythm. Plasma ACTH and CRH in hypothalamus are increased in hyperammonemic rats. Corticosterone injection normalizes ACTH. Chronic hyperammonemia impairs adrenal function, reduces corticosterone content and ACTH-induced corticosterone release in adrenals, leading to reduced feedback modulation of HPA axis by corticosterone which contributes to impair circadian rhythms of activity. Impaired circadian rhythms and motor activity may be corrected in hyperammonemia and hepatic encephalopathy by corticosterone treatment.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Ritmo Circadiano , Corticosterona/metabolismo , Hiperamonemia/metabolismo , Hormona Adrenocorticotrópica/sangre , Hormona Adrenocorticotrópica/metabolismo , Animales , Células Cultivadas , Corticosterona/administración & dosificación , Corticosterona/sangre , Hormona Liberadora de Corticotropina/sangre , Hormona Liberadora de Corticotropina/metabolismo , Encefalopatía Hepática/sangre , Encefalopatía Hepática/metabolismo , Hiperamonemia/sangre , Hipotálamo/metabolismo , Masculino , Actividad Motora , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA