RESUMEN
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, while semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE as well as 60 age and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, both in the MTL and in neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, on the other hand, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, while hippocampal functional topographies were unaffected. Leveraging MRI proxies of MTL pathology, we furthermore observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic, but again not semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, while episodic processes are supported by a network involving both the hippocampus and neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
RESUMEN
BACKGROUND: Juvenile myoclonic epilepsy (JME) is associated with cortical thinning of the motor areas. The relative contribution of antiseizure medication to cortical thickness is unknown. We aimed to investigate how valproate influences the cortical morphology of JME. METHODS: In this cross-sectional study, individuals with JME with and without valproate, with temporal lobe epilepsy (TLE) with valproate and controls were selected through propensity score matching. Participants underwent T1-weighted brain imaging and vertex-wise calculation of cortical thickness. RESULTS: We matched 36 individuals with JME on valproate with 36 individuals with JME without valproate, 36 controls and 19 individuals with TLE on valproate. JME on valproate showed thinning of the precentral gyri (left and right, p<0.001) compared with controls and thinning of the left precentral gyrus when compared with JME not on valproate (p<0.01) or to TLE on valproate (p<0.001). Valproate dose correlated negatively with the thickness of the precentral gyri, postcentral gyri and superior frontal gyrus in JME (left and right p<0.0001), but not in TLE. CONCLUSIONS: Valproate was associated with JME-specific and dose-dependent thinning of the cortical motor regions. This suggests that valproate is a key modulator of cortical morphology in JME, an effect that may underlie its high efficacy in this syndrome.
RESUMEN
OBJECTIVE: Anterior temporal lobe resection (ATLR) effectively controls seizures in medically refractory temporal lobe epilepsy but risks significant episodic memory decline. Beyond 1 year postoperatively, the influence of preoperative clinical factors on episodic memory and long-term network plasticity remain underexplored. Ten years post-ATLR, we aimed to determine biomarkers of successful memory network reorganization and establish presurgical features' lasting impact on memory function. METHODS: Twenty-five ATLR patients (12 left-sided) and 10 healthy controls underwent a memory-encoding functional magnetic resonance imaging paradigm alongside neuropsychometry 10 years postsurgery. Generalized psychophysiological interaction analyses modeled network functional connectivity of words/faces remembered, seeding from the medial temporal lobes (MTLs). Differences in successful memory connectivity were assessed between controls and left/right ATLR. Multivariate regressions and mixed-effect models probed preoperative phenotypes' effects on long-term memory outcomes. RESULTS: Ten years post-ATLR, lower baseline functioning (verbal and performance intelligence quotient) and a focal memory impairment preoperatively predicted worse long-term memory outcomes. Poorer verbal memory was significantly associated with longer epilepsy duration and earlier onset age. Relative to controls, successful word and face encoding involved increased functional connectivity from both or remnant MTL seeds and contralesional parahippocampus/hippocampus after left/right ATLR. Irrespective of surgical laterality, successful memory encoding correlated with increased MTL-seeded connectivity to frontal (bilateral insula, right anterior cingulate), right parahippocampal, and bilateral fusiform gyri. Ten years postsurgery, better memory performance was correlated with contralateral frontal plasticity, which was disrupted with longer epilepsy duration. SIGNIFICANCE: Our findings underscore the enduring nature of functional network reorganizations to provide long-term cognitive support. Ten years post-ATLR, successful memory formation featured stronger connections near resected areas and contralateral regions. Preoperative network disruption possibly influenced effectiveness of postoperative plasticity. These findings are crucial for enhancing long-term memory prediction and strategies for lasting memory rehabilitation.
RESUMEN
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Calidad de Vida , Encéfalo/patología , Imagen por Resonancia Magnética , Mapeo EncefálicoRESUMEN
Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics.
Asunto(s)
Encéfalo , Epilepsia , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Inteligencia Artificial , Estudios Transversales , Imagen por Resonancia Magnética , Epilepsia/diagnóstico por imagen , Epilepsia/patología , Atrofia/patologíaRESUMEN
Around 50% of patients undergoing frontal lobe surgery for focal drug-resistant epilepsy become seizure free post-operatively; however, only about 30% of patients remain seizure free in the long-term. Early seizure recurrence is likely to be caused by partial resection of the epileptogenic lesion, whilst delayed seizure recurrence can occur even if the epileptogenic lesion has been completely excised. This suggests a coexistent epileptogenic network facilitating ictogenesis in close or distant dormant epileptic foci. As thalamic and striatal dysregulation can support epileptogenesis and disconnection of cortico-thalamostriatal pathways through hemispherotomy or neuromodulation can improve seizure outcome regardless of focality, we hypothesize that projections from the striatum and the thalamus to the cortex may contribute to this common epileptogenic network. To this end, we retrospectively reviewed a series of 47 consecutive individuals who underwent surgery for drug-resistant frontal lobe epilepsy. We performed voxel-based and tractography disconnectome analyses to investigate shared patterns of disconnection associated with long-term seizure freedom. Seizure freedom after 3 and 5 years was independently associated with disconnection of the anterior thalamic radiation and anterior cortico-striatal projections. This was also confirmed in a subgroup of 29 patients with complete resections, suggesting these pathways may play a critical role in supporting the development of novel epileptic networks. Our study indicates that network dysfunction in frontal lobe epilepsy may extend beyond the resection and putative epileptogenic zone. This may be critical in the pathogenesis of delayed seizure recurrence as thalamic and striatal networks may promote epileptogenesis and disconnection may underpin long-term seizure freedom.
Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Frontal , Humanos , Epilepsia del Lóbulo Frontal/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Electroencefalografía , Convulsiones/cirugía , Epilepsia Refractaria/cirugíaRESUMEN
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Asunto(s)
Epilepsia del Lóbulo Frontal , Epilepsia del Lóbulo Temporal , Adulto , Humanos , Memoria a Corto Plazo , Epilepsia del Lóbulo Frontal/psicología , Encéfalo , Semántica , Pruebas Neuropsicológicas , Imagen por Resonancia MagnéticaRESUMEN
OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.
Asunto(s)
Epilepsia del Lóbulo Temporal , Trastornos de la Memoria , Memoria Episódica , Humanos , Epilepsia del Lóbulo Temporal/psicología , Epilepsia del Lóbulo Temporal/complicaciones , Masculino , Femenino , Adulto , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Hipocampo/patología , Adulto Joven , Memoria Espacial/fisiología , SemánticaRESUMEN
Aphasia recovery after stroke depends on the condition of the remaining, extralesional brain network. Network control theory (NCT) provides a unique, quantitative approach to assess the interaction between brain networks. In this longitudinal, large-scale, whole-brain connectome study, we evaluated whether controllability measures of language-related regions are associated with treated aphasia recovery. Using probabilistic tractography and controlling for the effects of structural lesions, we reconstructed whole-brain diffusion tensor imaging (DTI) connectomes from 68 individuals (20 female, 48 male) with chronic poststroke aphasia who completed a three-week language therapy. Applying principles of NCT, we computed regional (1) average and (2) modal controllability, which decode the ability of a region to (1) spread control input through the brain network and (2) to facilitate brain state transitions. We tested the relationship between pretreatment controllability measures of 20 language-related left hemisphere regions and improvements in naming six months after language therapy using multiple linear regressions and a parsimonious elastic net regression model with cross-validation. Regional controllability of the inferior frontal gyrus (IFG) pars opercularis, pars orbitalis, and the anterior insula were associated with treatment outcomes independently of baseline aphasia severity, lesion volume, age, education, and network size. Modal controllability of the IFG pars opercularis was the strongest predictor of treated aphasia recovery with cross-validation and outperformed traditional graph theory, lesion load, and demographic measures. Regional NCT measures can reflect the status of the residual language network and its interaction with the remaining brain network, being able to predict language recovery after aphasia treatment.SIGNIFICANCE STATEMENT Predicting and understanding language recovery after brain injury remains a challenging, albeit a fundamental aspect of human neurology and neuroscience. In this study, we applied network control theory (NCT) to fully harness the concept of brain networks as dynamic systems and to evaluate their interaction. We studied 68 stroke survivors with aphasia who underwent imaging and longitudinal behavioral assessments coupled with language therapy. We found that the controllability of the inferior frontal regional network significantly predicted recovery in language production six months after treatment. Importantly, controllability outperformed traditional demographic, lesion, and graph-theoretical measures. Our findings shed light on the neurobiological basis of human language and can be translated into personalized rehabilitation approaches.
Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/terapia , Encéfalo/diagnóstico por imagen , Lenguaje , Red Nerviosa/diagnóstico por imagen , Recuperación de la Función , Estimulación Acústica/métodos , Adulto , Anciano , Encéfalo/fisiología , Conectoma/métodos , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Estimulación Luminosa/métodos , Recuperación de la Función/fisiologíaRESUMEN
Temporal lobe epilepsy (TLE) is associated with widespread brain alterations. Using quantitative susceptibility mapping (QSM) alongside transverse relaxation rate ( R 2 * ), we investigated regional brain susceptibility changes in 36 patients with left-sided (LTLE) or right-sided TLE (RTLE) secondary to hippocampal sclerosis, and 27 healthy controls (HC). We compared three susceptibility calculation methods to ensure image quality. Correlations of susceptibility and R 2 * with age of epilepsy onset, frequency of focal-to-bilateral tonic-clonic seizures (FBTCS), and neuropsychological test scores were examined. Weak-harmonic QSM (WH-QSM) successfully reduced noise and removed residual background field artefacts. Significant susceptibility increases were identified in the left putamen in the RTLE group compared to the LTLE group, the right putamen and right thalamus in the RTLE group compared to HC, and a significant susceptibility decrease in the left hippocampus in LTLE versus HC. LTLE patients who underwent epilepsy surgery showed significantly lower left-versus-right hippocampal susceptibility. Significant R 2 * changes were found between TLE and HC groups in the amygdala, putamen, thalamus, and in the hippocampus. Specifically, decreased R2 * was found in the left and right hippocampus in LTLE and RTLE, respectively, compared to HC. Susceptibility and R 2 * were significantly correlated with cognitive test scores in the hippocampus, globus pallidus, and thalamus. FBTCS frequency correlated positively with ipsilateral thalamic and contralateral putamen susceptibility and with R 2 * in bilateral globi pallidi. Age of onset was correlated with susceptibility in the hippocampus and putamen, and with R 2 * in the caudate. Susceptibility and R 2 * changes observed in TLE groups suggest selective loss of low-myelinated neurons alongside iron redistribution in the hippocampi, predominantly ipsilaterally, indicating QSM's sensitivity to local pathology. Increased susceptibility and R 2 * in the thalamus and putamen suggest increased iron content and reflect disease severity.
Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Mapeo Encefálico , Lateralidad Funcional/fisiología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Convulsiones/complicaciones , Imagen por Resonancia Magnética/métodosRESUMEN
OBJECTIVE: The cognitive profile of juvenile absence epilepsy (JAE) remains largely uncharacterized. This study aimed to: (1) elucidate the neuropsychological profile of JAE; (2) identify familial cognitive traits by investigating unaffected JAE siblings; (3) establish the clinical meaningfulness of JAE-associated cognitive traits; (4) determine whether cognitive traits across the idiopathic generalized epilepsy (IGE) spectrum are shared or syndrome-specific, by comparing JAE to juvenile myoclonic epilepsy (JME); and (5) identify relationships between cognitive abilities and clinical characteristics. METHODS: We investigated 123 participants-23 patients with JAE, 16 unaffected siblings of JAE patients, 45 healthy controls, and 39 patients with JME-who underwent a comprehensive neuropsychological test battery including measures within four cognitive domains: attention/psychomotor speed, language, memory, and executive function. We correlated clinical measures with cognitive performance data to decode effects of age at onset and duration of epilepsy. RESULTS: Cognitive performance in individuals with JAE was reduced compared to controls across attention/psychomotor speed, language, and executive function domains; those with ongoing seizures additionally showed lower memory scores. Patients with JAE and their unaffected siblings had similar language impairment compared to controls. Individuals with JME had worse response inhibition than those with JAE. Across all patients, those with older age at onset had better attention/psychomotor speed performance. SIGNIFICANCE: JAE is associated with wide-ranging cognitive difficulties that encompass domains reliant on frontal lobe processing, including language, attention, and executive function. JAE siblings share impairment with patients on linguistic measures, indicative of a familial trait. Executive function subdomains may be differentially affected across the IGE spectrum. Cognitive abilities are detrimentally modulated by an early age at seizure onset.
Asunto(s)
Epilepsia Tipo Ausencia , Epilepsia Generalizada , Epilepsia Mioclónica Juvenil , Humanos , Epilepsia Tipo Ausencia/genética , Hermanos/psicología , Epilepsia Generalizada/genética , Epilepsia Generalizada/psicología , Cognición/fisiología , Fenotipo , Pruebas Neuropsicológicas , Inmunoglobulina ERESUMEN
Perampanel, a noncompetitive antagonist of the postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor, is effective for controlling focal to bilateral tonic-clonic seizures but is also known to increase feelings of anger. Using statistical parametric mapping-derived measures of activation and task-modulated functional connectivity (psychophysiologic interaction), we investigated 14 people with focal epilepsy who had verbal fluency functional magnetic resonance imaging (fMRI) twice, before and after the add-on treatment of perampanel. For comparison, we included 28 people with epilepsy, propensity-matched for clinical characteristics, who had two scans but no change in anti-seizure medication (ASM) regimen in-between. After commencing perampanel, individuals had higher task-related activations in left orbitofrontal cortex (OFC), fewer task-related activations in the subcortical regions including the left thalamus and left caudate, and lower task-related thalamocaudate and caudate-subtantial nigra connectivity. Decreased task-related connectivity is observed between the left OFC and precuneus and left medial frontal lobe. Our results highlight the brain regions associated with the beneficiary therapeutic effects on focal to bilateral tonic-clonic seizures (thalamus and caudate) but also the undesired affective side effects of perampanel with increased anger and aggression (OFC).
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Epilepsias Parciales , Humanos , Anticonvulsivantes/efectos adversos , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/tratamiento farmacológico , Piridonas/efectos adversos , Imagen por Resonancia Magnética , Convulsiones/diagnóstico por imagen , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Resultado del TratamientoRESUMEN
OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. An increasingly identified subset of patients with TLE consists of those who show bilaterally independent temporal lobe seizures. The purpose of this study was to leverage network neuroscience to better understand the interictal whole brain network of bilateral TLE (BiTLE). METHODS: In this study, using a multicenter resting state functional magnetic resonance imaging (rs-fMRI) data set, we constructed whole-brain functional networks of 19 patients with BiTLE, and compared them to those of 75 patients with unilateral TLE (UTLE). We quantified resting-state, whole-brain topological properties using metrics derived from network theory, including clustering coefficient, global efficiency, participation coefficient, and modularity. For each metric, we computed an average across all brain regions, and iterated this process across network densities. Curves of network density vs each network metric were compared between groups. Finally, we derived a combined metric, which we term the "integration-segregation axis," by combining whole-brain average clustering coefficient and global efficiency curves, and applying principal component analysis (PCA)-based dimensionality reduction. RESULTS: Compared to UTLE, BiTLE had decreased global efficiency (p = .031), and decreased whole brain average participation coefficient across a range of network densities (p = .019). Modularity maximization yielded a larger number of smaller communities in BiTLE than in UTLE (p = .020). Differences in network properties separate BiTLE and UTLE along the integration-segregation axis, with regions within the axis having a specificity of up to 0.87 for BiTLE. Along the integration-segregation axis, UTLE patients with poor surgical outcomes were distributed in the same regions as BiTLE, and network metrics confirmed similar patterns of increased segregation in both BiTLE and poor outcome UTLE. SIGNIFICANCE: Increased interictal whole-brain network segregation, as measured by rs-fMRI, is specific to BiTLE, as well as poor surgical outcome UTLE, and may assist in non-invasively identifying this patient population prior to intracranial electroencephalography or device implantation.
Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Imagen por Resonancia Magnética , Encéfalo , Mapeo Encefálico/métodos , ElectrocorticografíaRESUMEN
OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT. METHODS: We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset. RESULTS: Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds. SIGNIFICANCE: Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility.
Asunto(s)
Epilepsia del Lóbulo Temporal , Adulto , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Lóbulo Temporal , ConvulsionesRESUMEN
Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.
Asunto(s)
Conectoma , Epilepsia del Lóbulo Temporal , Adulto , Atrofia/patología , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Humanos , Imagen por Resonancia MagnéticaRESUMEN
OBJECTIVE: Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS: Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS: Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE: Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.
Asunto(s)
Epilepsia del Lóbulo Temporal , Memoria Episódica , Epilepsia del Lóbulo Temporal/patología , Lateralidad Funcional/fisiología , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis/complicaciones , ConvulsionesRESUMEN
OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.
Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Atrofia/patología , Biomarcadores , Estudios Transversales , Epilepsia/complicaciones , Epilepsia del Lóbulo Temporal/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis/complicacionesRESUMEN
Episodic memory is the ability to remember events from our past accurately. The process of pattern separation is hypothesized to underpin this ability and is defined as the capacity to orthogonalize memory traces, to maximize the features that make them unique. Contemporary cognitive neuroscience suggests that pattern separation entails complex interactions between the hippocampus and neocortex, where specific hippocampal subregions shape neural reinstatement in the neocortex. To test this hypothesis, the current work studied both healthy controls and patients with temporal lobe epilepsy who presented with hippocampal structural anomalies. We measured neural activity in all participants using functional MRI while they retrieved memorized items or lure items, which shared features with the target. Behaviourally, patients with temporal lobe epilepsy were less able to exclude lures than controls and showed a reduction in pattern separation. To assess the hypothesized relationship between neural patterns in the hippocampus and neocortex, we identified the topographic gradients of intrinsic connectivity along neocortical and hippocampal subfield surfaces and determined the topographic profile of the neural activity accompanying pattern separation. In healthy controls, pattern separation followed a graded topography of neural activity, both along the hippocampal long axis (and peaked in anterior segments that are more heavily engaged in transmodal processing) and along the neocortical hierarchy running from unimodal to transmodal regions (peaking in transmodal default mode regions). In patients with temporal lobe epilepsy, however, this concordance between task-based functional activations and topographic gradients was markedly reduced. Furthermore, person-specific measures of concordance between task-related activity and connectivity gradients in patients and controls were related to inter-individual differences in behavioural measures of pattern separation and episodic memory, highlighting the functional relevance of the observed topographic motifs. Our work is consistent with an emerging understanding that successful discrimination between memories with similar features entails a shift in the locus of neural activity away from sensory systems, a pattern that is mirrored along the hippocampal long axis and with respect to neocortical hierarchies. More broadly, our study establishes topographic profiling using intrinsic connectivity gradients, capturing the functional underpinnings of episodic memory processes in a manner that is sensitive to their reorganization in pathology.
Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición/fisiología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Memoria Episódica , Adulto , Conectoma , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Adulto JovenRESUMEN
Prior research has shown a role of the medial temporal lobe, particularly the hippocampal-parahippocampal complex, in spatial cognition. Here, we developed a new paradigm, the conformational shift spatial task (CSST), which examines the ability to encode and retrieve spatial relations between unrelated items. This task is short, uses symbolic cues, incorporates two difficulty levels, and can be administered inside the scanner. A cohort of 48 healthy young adults underwent the CSST, together with a set of behavioral measures and multimodal magnetic resonance imaging (MRI). Inter-individual differences in CSST performance correlated with scores on an established spatial memory paradigm, but neither with episodic memory nor mnemonic discrimination, supporting specificity. Analyzing high-resolution structural MRI data, individuals with better spatial memory showed thicker medial and lateral temporal cortices. Functional relevance of these findings was supported by task-based functional MRI analysis in the same participants and ad hoc meta-analysis. Exploratory resting-state functional MRI analyses centered on clusters of morphological effects revealed additional modulation of intrinsic network integration, particularly between lateral and medial temporal structures. Our work presents a novel spatial memory paradigm and supports an integrated structure-function substrate in the human temporal lobe. Task paradigms are programmed in python and made open access.
Asunto(s)
Memoria/fisiología , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , SemánticaRESUMEN
OBJECTIVE: Cognitive problems, especially disturbances in episodic memory, and hippocampal sclerosis are common in temporal lobe epilepsy (TLE), but little is known about the relationship of hippocampal morphology with memory. We aimed to relate hippocampal surface-shape patterns to verbal and visual learning. METHODS: We analyzed hippocampal surface shapes on high-resolution magnetic resonance images and the Adult Memory and Information Processing Battery in 145 unilateral refractory TLE patients undergoing epilepsy surgery, a validation set of 55 unilateral refractory TLE patients, and 39 age- and sex-matched healthy volunteers. RESULTS: Both left TLE (LTLE) and right TLE (RTLE) patients had lower verbal (LTLE 44 ± 11; RTLE 45 ± 10) and visual learning (LTLE 34 ± 8, RTLE 30 ± 8) scores than healthy controls (verbal 58 ± 8, visual 39 ± 6; p < 0.001). Verbal learning was more impaired the greater the atrophy of the left superolateral hippocampal head. In contrast, visual memory was worse with greater bilateral inferomedial hippocampal atrophy. Postsurgical verbal memory decline was more common in LTLE than in RTLE (reliable change index in LTLE 27% vs RTLE 7%, p = 0.006), whereas there were no differences in postsurgical visual memory decline between those groups. Preoperative atrophy of the left hippocampal tail predicted postsurgical verbal memory decline. INTERPRETATION: Memory deficits in TLE are associated with specific morphological alterations of the hippocampus, which could help stratify TLE patients into those at high versus low risk of presurgical or postsurgical memory deficits. This knowledge could improve planning and prognosis of selective epilepsy surgery and neuropsychological counseling in TLE. ANN NEUROL 2020 ANN NEUROL 2020;88:170-182.