RESUMEN
Gout is of particularly high prevalence in the Maori and Pacific (Polynesian) populations of Aotearoa New Zealand (NZ). Here, we investigated the contribution of common population-specific copy number variation (CNV) to gout in the Aotearoa NZ Polynesian population. Microarray-generated genome-wide genotype data from Aotearoa NZ Polynesian individuals with (n = 1196) and without (n = 1249) gout were analyzed. Comparator population groups were 552 individuals of European ancestry and 1962 of Han Chinese ancestry. Levels of circulating major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) were measured by enzyme-linked immunosorbent assay. Fifty-four CNV regions (CNVRs) appearing in at least 10 individuals were detected, of which seven common (>2%) CNVRs were specific to or amplified in Polynesian people. A burden test of these seven revealed associations of insertion/deletion with gout (odds ratio (OR) 95% confidence interval [CI] = 1.80 [1.01; 3.22], P = 0.046). Individually testing of the seven CNVRs for association with gout revealed nominal association of CNVR1 with gout in Western Polynesian (Chr6: 31.36-31.45 Mb, OR = 1.72 [1.03; 2.92], P = 0.04), CNVR6 in the meta-analyzed Polynesian sample sets (Chr1: 196.75-196.92 Mb, OR = 1.86 [1.16; 3.00], P = 0.01) and CNVR9 in Western Polynesian (Chr1: 189.35-189.54 Mb, OR = 2.75 [1.15; 7.13], P = 0.03). Analysis of European gout genetic association data demonstrated a signal of association at the CNVR1 locus that was an expression quantitative trait locus for MICA. The most common CNVR (CNVR1) includes deletion of the MICA gene, encoding an immunomodulatory protein. Expression of MICA was reduced in the serum of individuals with the deletion. In summary, we provide evidence for the association of CNVR1 containing MICA with gout in Polynesian people, implicating class I MHC-mediated antigen presentation in gout.
Asunto(s)
Variaciones en el Número de Copia de ADN , Gota , Antígenos de Histocompatibilidad Clase I , Nativos de Hawái y Otras Islas del Pacífico , Humanos , Genotipo , Gota/etnología , Gota/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA , Nativos de Hawái y Otras Islas del Pacífico/genéticaRESUMEN
OBJECTIVES: The minor allele of the common rs2231142 ABCG2 variant predicts inadequate response to allopurinol urate lowering therapy. We hypothesize that additional variants in genes encoding urate transporters and allopurinol-to-oxypurinol metabolic enzymes also predict allopurinol response. METHODS: This study included a subset of participants with gout from the Long-term Allopurinol Safety Study Evaluating Outcomes in Gout Patients, whose whole genome was sequenced (n = 563). Good responders had a 4:1 or 5:1 ratio of good (serum urate (SU) <0.36 mmol/l on allopurinol ≤300 mg/day) to poor (SU ≥ 0.36 mmol/l despite allopurinol >300 mg/day) responses over 5-6 timepoints, while inadequate responders had a 1:4 or 1:5 ratio of good to poor responses. Adherence to allopurinol was determined by pill counts, and for a subgroup (n = 303), by plasma oxypurinol >20µmol/l. Using the sequence kernel association test (SKAT) we estimated the combined effect of rare and common variants in urate secretory (ABCC4, ABCC5, ABCG2, SLC17A1, SLC17A3, SLC22A6, SLC22A8) and reuptake genes (SLC2A9, SLC22A11) and in allopurinol-to-oxypurinol metabolic genes (AOX1, MOCOS, XDH) on allopurinol response. RESULTS: There was an association of rare and common variants in the allopurinol-to-oxypurinol gene group (PSKAT-C = 0.019), and in MOCOS, encoding molybdenum cofactor sulphurase, with allopurinol response (PSKAT-C = 0.011). Evidence for genetic association with allopurinol response in the allopurinol-to-oxypurinol gene group (PSKAT-C = 0.002) and MOCOS (PSKAT-C < 0.001) was stronger when adherence to allopurinol therapy was confirmed by plasma oxypurinol. CONCLUSION: We provide evidence for common and rare genetic variation in MOCOS associating with allopurinol response.
RESUMEN
The fat mass and obesity associated (FTO) locus consistently associates with higher body mass index (BMI) across diverse ancestral groups. However, previous small studies of people of Polynesian ancestries have failed to replicate the association. In this study, we used Bayesian meta-analysis to test rs9939609, the most replicated FTO variant, for association with BMI with a large sample (n = 6095) of Aotearoa New Zealanders of Polynesian (Maori and Pacific) ancestry and of Samoan people living in the Independent State of Samoa and in American Samoa. We did not observe statistically significant association within each separate Polynesian subgroup. Bayesian meta-analysis of the Aotearoa New Zealand Polynesian and Samoan samples resulted in a posterior mean effect size estimate of +0.21 kg/m2, with a 95% credible interval [+0.03 kg/m2, +0.39 kg/m2]. While the Bayes Factor (BF) of 0.77 weakly favors the null, the BF = 1.4 Bayesian support interval is [+0.04, +0.20]. These results suggest that rs9939609 in FTO may have a similar effect on mean BMI in people of Polynesian ancestries as previously observed in other ancestral groups.
Asunto(s)
Índice de Masa Corporal , Pueblo Maorí , Pueblos Isleños del Pacífico , Humanos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Teorema de Bayes , Predisposición Genética a la Enfermedad , Pueblo Maorí/genética , Nueva Zelanda , Pueblos Isleños del Pacífico/genética , Polimorfismo de Nucleótido SimpleRESUMEN
High serum urate is a prerequisite for gout and associated with metabolic disease. Genome-wide association studies (GWAS) have reported dozens of loci associated with serum urate control; however, there has been little progress in understanding the molecular basis of the associated loci. Here, we employed trans-ancestral meta-analysis using data from European and East Asian populations to identify 10 new loci for serum urate levels. Genome-wide colocalization with cis-expression quantitative trait loci (eQTL) identified a further five new candidate loci. By cis- and trans-eQTL colocalization analysis, we identified 34 and 20 genes, respectively, where the causal eQTL variant has a high likelihood that it is shared with the serum urate-associated locus. One new locus identified was SLC22A9 that encodes organic anion transporter 7 (OAT7). We demonstrate that OAT7 is a very weak urate-butyrate exchanger. Newly implicated genes identified in the eQTL analysis include those encoding proteins that make up the dystrophin complex, a scaffold for signaling proteins and transporters at the cell membrane; MLXIP that, with the previously identified MLXIPL, is a transcription factor that may regulate serum urate via the pentose-phosphate pathway and MRPS7 and IDH2 that encode proteins necessary for mitochondrial function. Functional fine mapping identified six loci (RREB1, INHBC, HLF, UBE2Q2, SFMBT1 and HNF4G) with colocalized eQTL containing putative causal SNPs. This systematic analysis of serum urate GWAS loci identified candidate causal genes at 24 loci and a network of previously unidentified genes likely involved in control of serum urate levels, further illuminating the molecular mechanisms of urate control.
Asunto(s)
Marcadores Genéticos , Predisposición Genética a la Enfermedad , Gota/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Ácido Úrico/sangre , Estudios de Casos y Controles , Estudio de Asociación del Genoma Completo , Genómica , Gota/sangre , Gota/genética , Humanos , Metaanálisis como AsuntoRESUMEN
BACKGROUND: Historically, geneticists have relied on genotyping arrays and imputation to study human genetic variation. However, an underrepresentation of diverse populations has resulted in arrays that poorly capture global genetic variation, and a lack of reference panels. This has contributed to deepening global health disparities. Whole genome sequencing (WGS) better captures genetic variation but remains prohibitively expensive. Thus, we explored WGS at "mid-pass" 1-7x coverage. RESULTS: Here, we developed and benchmarked methods for mid-pass sequencing. When applied to a population without an existing genomic reference panel, 4x mid-pass performed consistently well across ethnicities, with high recall (98%) and precision (97.5%). CONCLUSION: Compared to array data imputed into 1000 Genomes, mid-pass performed better across all metrics and identified novel population-specific variants with potential disease relevance. We hope our work will reduce financial barriers for geneticists from underrepresented populations to characterize their genomes prior to biomedical genetic applications.
Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Genoma , Genoma Humano , Genómica , Genotipo , Humanos , Secuenciación Completa del GenomaRESUMEN
RATIONALE & OBJECTIVE: The association between hyperuricemia and urolithiasis has been previously reported. However, this association is based on observational data, which are prone to residual confounding. The aim of this work was to use Mendelian randomization (MR) to evaluate if this relationship represents a causal effect of hyperuricemia. STUDY DESIGN: MR analysis using 2 approaches: 2-stage MR and 2-sample MR. SETTING & PARTICIPANTS: Participants aged 40-69 years from the UK Biobank Resource. EXPOSURE: Serum urate. OUTCOME: Urolithiasis. ANALYTICAL APPROACH: An observational analysis testing for an association between serum urate level and urolithiasis was performed using logistic regression. For MR analyses, serum urate-associated single-nucleotide polymorphisms, identified from genome-wide association data, were used as instrumental variables for serum urate. In the 2-stage MR analysis, a weighted genetic urate score was calculated from the instrumental variables, and a control function estimation model was fit. In the 2-sample MR analysis, multiple-instrument MR via the inverse-variance weighted method was performed. RESULTS: Individual-level data were available for 359,827 participants, of whom 6,398 (1.8%) reported urolithiasis. In the observational analysis, serum urate was positively associated with urolithiasis in an unadjusted analysis (odds ratio [OR], 1.47 [95% CI, 1.42-1.51]); however, after adjustment for relevant confounders, no association was observed (OR, 1.03 [95% CI, 0.99-1.08]). In the 2-stage MR analysis, no significant causal effect of serum urate level on urolithiasis was observed in the unadjusted (OR, 0.93 [95% CI, 0.81-1.08]) or adjusted (OR, 0.94 [95% CI, 0.80-1.09]) models. In the 2-sample MR analysis, multiple-instrument MR did not indicate a causal effect of serum urate on urolithiasis. LIMITATIONS: Stone composition and urinalysis data, including urine pH, were not available for this study. CONCLUSIONS: Our analyses do not support a causal effect of serum urate level on urolithiasis. The association between serum urate level and urolithiasis reported in observational studies is likely due to residual confounding.
Asunto(s)
Hiperuricemia/genética , Ácido Úrico/sangre , Urolitiasis/genética , Adulto , Anciano , Causalidad , Femenino , Humanos , Hiperuricemia/epidemiología , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Oportunidad Relativa , Reino Unido , Urolitiasis/epidemiologíaRESUMEN
Gout is a complex inflammatory arthritis affecting ~20% of people with an elevated serum urate level (hyperuricemia). Gout and hyperuricemia are essentially specific to humans and other higher primates, with varied prevalence across ancestral groups. SLC2A9 and ABCG2 are major loci associated with both urate and gout in multiple ancestral groups. However, fine mapping has been challenging due to extensive linkage disequilibrium underlying the associated regions. We used trans-ancestral fine mapping integrated with primate-specific genomic information to address this challenge. Trans-ancestral meta-analyses of GWAS cohorts of either European (EUR) or East Asian (EAS) ancestry resulted in single-variant resolution mappings for SLC2A9 (rs3775948 for urate and rs4697701 for gout) and ABCG2 (rs2622621 for gout). Tests of colocalization of variants in both urate and gout suggested existence of a shared candidate causal variant for SLC2A9 only in EUR and for ABCG2 only in EAS. The fine-mapped gout variant rs4697701 was within an ancient enhancer, whereas rs2622621 was within a primate-specific transposable element, both supported by functional evidence from the Roadmap Epigenomics project in human primary tissues relevant to urate and gout. Additional primate-specific elements were found near both loci and those adjacent to SLC2A9 overlapped with known statistical epistatic interactions associated with urate as well as multiple super-enhancers identified in urate-relevant tissues. We conclude that by leveraging ancestral differences trans-ancestral fine mapping has identified ancestral and functional variants for SLC2A9 or ABCG2 with primate-specific regulatory effects on urate and gout.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Gota/genética , Hiperuricemia/genética , Proteínas de Neoplasias/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Evolución Molecular , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Gota/patología , Humanos , Hiperuricemia/patología , Masculino , Polimorfismo de Nucleótido Simple , Primates , Especificidad de la Especie , Ácido Úrico/sangreAsunto(s)
Gota , Hiperuricemia , Humanos , Hiperuricemia/genética , Ácido Úrico , Estudio de Asociación del Genoma Completo , Bancos de Muestras Biológicas , Gota/genética , Reino Unido , Glicoproteínas/genética , Fosfoproteínas/genética , Proteínas de la Matriz Extracelular/genética , Proteínas Adaptadoras Transductoras de Señales/genéticaRESUMEN
BACKGROUND: The gene PPARGC1A, in particular the Gly482Ser variant (rs8192678), had been proposed to be subject to natural selection, particularly in recent progenitors of extant Polynesian populations. Reasons include high levels of population differentiation and increased frequencies of the derived type 2 diabetes (T2D) risk 482Ser allele, and association with body mass index (BMI) in a small Tongan population. However, no direct statistical tests for selection have been applied. METHODS: Using a range of Polynesian populations (Tongan, Maori, Samoan) we re-examined evidence for association between Gly482Ser with T2D and BMI as well as gout. Using also Asian, European, and African 1000 Genome Project samples a range of statistical tests for selection (F ST, integrated haplotype score (iHS), cross population extended haplotype homozygosity (XP-EHH), Tajima's D and Fay and Wu's H) were conducted on the PPARGC1A locus. RESULTS: No statistically significant evidence for association between Gly482Ser and any of BMI, T2D or gout was found. Population differentiation (F ST) was smallest between Asian and Pacific populations (New Zealand Maori ≤ 0.35, Samoan ≤ 0.20). When compared to European (New Zealand Maori ≤ 0.40, Samoan ≤ 0.25) or African populations (New Zealand Maori ≤ 0.80, Samoan ≤ 0.66) this differentiation was larger. We did not find any strong evidence for departure from neutral evolution at this locus when applying any of the other statistical tests for selection. However, using the same analytical methods, we found evidence for selection in specific populations at previously identified loci, indicating that lack of selection was the most likely explanation for the lack of evidence of selection in PPARGC1A. CONCLUSION: We conclude that there is no compelling evidence for selection at this locus, and that this gene should not be considered a candidate thrifty gene locus in Pacific populations. High levels of population differentiation at this locus and the reported absence of the derived 482Ser allele in some Melanesian populations, can alternatively be explained by multiple out-of-Africa migrations by ancestral progenitors, and subsequent genetic drift during colonisation of Polynesia. Intermediate 482Ser allele frequencies in extant Western Polynesian populations could therefore be due to recent admixture with Melanesian progenitors.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Nativos de Hawái y Otras Islas del Pacífico/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/patología , Femenino , Genotipo , Gota/genética , Gota/patología , Haplotipos , Humanos , Modelos Lineales , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Samoa , Selección Genética , Tonga , Adulto JovenRESUMEN
PURPOSE: Corneal dystrophies are a genetically heterogeneous group of disorders. We previously described a family with an autosomal dominant epithelial recurrent erosion dystrophy (ERED). We aimed to identify the underlying genetic cause of ERED in this family and 3 additional ERED families. We sought to characterize the potential function of the candidate genes using the human and zebrafish cornea. DESIGN: Case series study of 4 white families with a similar ERED. An experimental study was performed on human and zebrafish tissue to examine the putative biological function of candidate genes. PARTICIPANTS: Four ERED families, including 28 affected and 17 unaffected individuals. METHODS: HumanLinkage-12 arrays (Illumina, San Diego, CA) were used to genotype 17 family members. Next-generation exome sequencing was performed on an uncle-niece pair. Segregation of potential causative mutations was confirmed using Sanger sequencing. Protein expression was determined using immunohistochemistry in human and zebrafish cornea. Gene expression in zebrafish was assessed using whole-mount in situ hybridization. Morpholino-induced transient gene knockdown was performed in zebrafish embryos. MAIN OUTCOME MEASURES: Linkage microarray, exome analysis, DNA sequence analysis, immunohistochemistry, in situ hybridization, and morpholino-induced genetic knockdown results. RESULTS: Linkage microarray analysis identified a candidate region on chromosome chr10:12,576,562-112,763,135, and exploration of exome sequencing data identified 8 putative pathogenic variants in this linkage region. Two variants segregated in 06NZ-TRB1 with ERED: COL17A1 c.3156CâT and DNAJC9 c.334GâA. The COL17A1 c.3156CâT variant segregated in all 4 ERED families. We showed biologically relevant expression of these proteins in human cornea. Both proteins are expressed in the cornea of zebrafish embryos and adults. Zebrafish lacking Col17a1a and Dnajc9 during development show no gross corneal phenotype. CONCLUSIONS: The COL17A1 c.3156CâT variant is the likely causative mutation in our recurrent corneal erosion families, and its presence in 4 independent families suggests that it is prevalent in ERED. This same COL17A1 c.3156CâT variant recently was identified in a separate pedigree with ERED. Our study expands the phenotypic spectrum of COL17A1 disease from autosomal recessive epidermolysis bullosa to autosomal dominant ERED and identifies COL17A1 as a key protein in maintaining integrity of the corneal epithelium.
Asunto(s)
Empalme Alternativo/genética , Autoantígenos/genética , Distrofias Hereditarias de la Córnea/genética , Epitelio Corneal/patología , Mutación , Colágenos no Fibrilares/genética , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Animales , Niño , Distrofias Hereditarias de la Córnea/diagnóstico , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/fisiología , Silenciador del Gen , Ligamiento Genético , Proteínas del Choque Térmico HSP40/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Hibridación in Situ , Masculino , Repeticiones de Microsatélite , Microscopía Confocal , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra , Colágeno Tipo XVIIAsunto(s)
Efecto Fundador , Enfermedad de Parkinson , Proteínas Quinasas , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Polinesia , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
BACKGROUND: Gout is a consequence of an innate immune reaction to monosodium urate crystals deposited in joints. Acute gout attacks can be triggered by dietary factors that are themselves associated with serum urate levels. Tomato consumption is an anecdotal trigger of gout flares. This study aimed to measure the frequency of tomato consumption as a self-reported trigger of gout attacks in a large New Zealand sample set, and to test the hypothesis that tomato consumption is associated with serum urate levels. METHODS: Two thousand fifty one New Zealanders (of Maori, Pacific Island, European or other ancestry) with clinically-ascertained gout were asked about gout trigger foods. European individuals from the Atherosclerosis Risk In Communities (ARIC; n = 7517) Study, Cardiovascular Health Study (CHS; n = 2151) and Framingham Heart Study (FHS; n = 3052) were used to test, in multivariate-adjusted analyses, for association between serum urate and tomato intake. RESULTS: Seventy one percent of people with gout reported having ≥1 gout trigger food. Of these 20% specifically mentioned tomatoes, the 4(th) most commonly reported trigger food. There was association between tomato intake and serum urate levels in the ARIC, CHS and FHS combined cohort (ß = 0.66 µmolL(-1) increase in serum urate per additional serve per week; P = 0.006) - evident in both sexes (men: ß = 0.84 µmolL(-1), P = 0.035; women: ß = 0.59 µmolL (-1), P = 0.041). CONCLUSIONS: While our descriptive and observational data are unable to support the claim that tomato consumption is a trigger of gout attacks, the positive association between tomato consumption and serum urate levels suggests that the self-reporting of tomatoes as a dietary trigger by people with gout has a biological basis.
Asunto(s)
Gota/sangre , Gota/inducido químicamente , Solanum lycopersicum/efectos adversos , Solanum lycopersicum/metabolismo , Ácido Úrico/sangre , Adolescente , Adulto , Anciano , Femenino , Gota/etnología , Humanos , Hiperuricemia/sangre , Hiperuricemia/inducido químicamente , Hiperuricemia/etnología , Masculino , Persona de Mediana Edad , Nativos de Hawái y Otras Islas del Pacífico/etnología , Nueva Zelanda/etnología , Encuestas y Cuestionarios , Población Blanca/etnología , Adulto JovenRESUMEN
OBJECTIVE: Consumption of high fructose corn syrup (HFCS)-sweetened beverages increases serum urate and risk of incident gout. Genetic variants in SLC2A9, that exchanges uric acid for glucose and fructose, associate with gout. We tested association between sugar (sucrose)-sweetened beverage (SSB) consumption and prevalent gout. We also tested the hypothesis that SLC2A9 genotype and SSB consumption interact to determine gout risk. METHODS: Participants were 1634 New Zealand (NZ) European Caucasian, Ma¯ori and Pacific Island people and 7075 European Caucasians from the Atherosclerosis Risk in Communities (ARIC) study. NZ samples were genotyped for rs11942223 and ARIC for rs6449173. Effect estimates were multivariate adjusted. RESULTS: SSB consumption increased gout risk. The OR for four drinks/day relative to zero was 6.89 (p=0.045), 5.19 (p=0.010) and 2.84 (p=0.043) for European Caucasian, Ma¯ori and Pacific Islanders, respectively. With each extra daily SSB serving, carriage of the gout-protective allele of SLC2A9 associated with a 15% increase in risk (p=0.078), compared with a 12% increase in non-carriers (p=0.002). The interaction term was significant in pooled (pInteraction=0.01) but not meta-analysed (pInteraction=0.99) data. In ARIC, with each extra daily serving, a greater increase in serum urate protective allele carriers (0.005 (p=8.7×10(-5)) compared with 0.002 (p=0.016) mmol/L) supported the gout data (pInteraction=0.062). CONCLUSIONS: Association of SSB consumption with prevalent gout supports reduction of SSB in management. The interaction data suggest that SLC2A9-mediated renal uric acid excretion is physiologically influenced by intake of simple sugars derived from SSB, with SSB exposure negating the gout risk discrimination of SLC2A9.
Asunto(s)
Bebidas , Sacarosa en la Dieta/efectos adversos , Interacción Gen-Ambiente , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Gota/genética , Hiperuricemia/genética , Ácido Úrico/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Genotipo , Gota/epidemiología , Humanos , Hiperuricemia/epidemiología , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo , Adulto JovenRESUMEN
Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.
RESUMEN
BACKGROUND: SLC2A9 is a strong genetic risk factor for hyperuricaemia and gout. SLC2A9 (GLUT9) is a high capacity urate transporter and reportedly transports glucose and fructose. Intake of fructose-containing beverages is associated with development of hyperuricaemia and gout. OBJECTIVE: To determine whether genetic variation in SLC2A9 influences the acute serum urate response to a fructose load. METHODS: Following an overnight fast, 76 healthy volunteers (25 Maori, 26 Pacific, 25 European Caucasian) drank a solution containing 64 g fructose. Serum and urine were obtained immediately before and then 30, 60, 120 and 180 min after ingestion. The SLC2A9 single nucleotide polymorphism (SNP) rs11942223 was genotyped and data were analysed based on the presence or absence of the gout protective minor allele (C). RESULTS: The rs11942223 C allele was present in 17 participants (22%). In the entire group, fructose intake led to an increase in serum urate, which peaked 60 min following fructose ingestion (analysis of variance p=0.006). The presence of the C allele was associated with an attenuated hyperuricaemic response (p(SNP)<0.0001) and increased fractional excretion of uric acid (FEUA) (p(SNP)<0.0001) following the fructose load. The effects of rs11942223 variants on serum urate and FEUA in response to fructose were present only in Caucasian ancestral subgroups but not in the Maori and Pacific ancestral subgroup. CONCLUSIONS: Variation in SLC2A9 influences acute serum urate and FEUA responses to a fructose load. SLC2A9 genotype may influence the development of gout on exposure to fructose-containing beverages, particularly in European Caucasian populations.
Asunto(s)
Fructosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Gota/genética , Hiperuricemia/genética , Edulcorantes Nutritivos/metabolismo , Ácido Úrico/metabolismo , Adolescente , Adulto , Femenino , Fructosa/farmacología , Genotipo , Gota/metabolismo , Humanos , Hiperuricemia/metabolismo , Masculino , Persona de Mediana Edad , Nativos de Hawái y Otras Islas del Pacífico/genética , Edulcorantes Nutritivos/farmacología , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Adulto JovenRESUMEN
Aims: Monogenic diabetes accounts for 1-2% of diabetes cases yet is often misdiagnosed as type 2 diabetes. The aim of this study was to examine in Maori and Pacific adults clinically diagnosed with type 2 diabetes within 40 years of age, (a) the prevalence of monogenic diabetes in this population (b) the prevalence of beta-cell autoantibodies and (c) the pre-test probability of monogenic diabetes. Methods: Targeted sequencing data of 38 known monogenic diabetes genes was analyzed in 199 Maori and Pacific peoples with BMI of 37.9 ± 8.6 kg/m2 who had been diagnosed with type 2 diabetes between 3 and 40 years of age. A triple-screen combined autoantibody assay was used to test for GAD, IA-2, and ZnT8. MODY probability calculator score was generated in those with sufficient clinical information (55/199). Results: No genetic variants curated as likely pathogenic or pathogenic were found. One individual (1/199) tested positive for GAD/IA-2/ZnT8 antibodies. The pre-test probability of monogenic diabetes was calculated in 55 individuals with 17/55 (31%) scoring above the 20% threshold considered for diagnostic testing referral. Discussion: Our findings suggest that monogenic diabetes is rare in Maori and Pacific people with clinical age, and the MODY probability calculator likely overestimates the likelihood of a monogenic cause for diabetes in this population.
Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Pueblo Maorí , Nueva Zelanda/epidemiología , Pruebas GenéticasRESUMEN
OBJECTIVE: In gout, hyperuricemia promotes urate crystal deposition, which stimulates the NLRP3 inflammasome and interleukin-1ß (IL-1ß)-mediated arthritis. Incident gout without background hyperuricemia is rarely reported. To identify hyperuricemia-independent mechanisms driving gout incidence and progression, we characterized erosive urate crystalline inflammatory arthritis in a young female patient with normouricemia diagnosed as having sufficient and weighted classification criteria for gout according to the American College of Rheumatology (ACR)/EULAR gout classification criteria (the proband). METHODS: We conducted whole-genome sequencing, quantitative proteomics, whole-blood RNA-sequencing analysis using serum samples from the proband. We used a mouse model of IL-1ß-induced knee synovitis to characterize proband candidate genes, biomarkers, and pathogenic mechanisms of gout. RESULTS: Lubricin level was attenuated in human proband serum and associated with elevated acute-phase reactants and inflammatory whole-blood transcripts and transcriptional pathways. The proband had predicted damaging gene variants of NLRP3 and of inter-α trypsin inhibitor heavy chain 3, an inhibitor of lubricin-degrading cathepsin G. Changes in the proband's serum protein interactome network supported enhanced lubricin degradation, with cathepsin G activity increased relative to its inhibitors, SERPINB6 and thrombospondin 1. Activation of Toll-like receptor 2 (TLR-2) suppressed levels of lubricin mRNA and lubricin release in cultured human synovial fibroblasts (P < 0.01). Lubricin blunted urate crystal precipitation and IL-1ß induction of xanthine oxidase and urate in cultured macrophages (P < 0.001). In lubricin-deficient mice, injection of IL-1ß in knees increased xanthine oxidase-positive synovial resident M1 macrophages (P < 0.05). CONCLUSION: Our findings linked normouricemic erosive gout to attenuated lubricin, with impaired control of cathepsin G activity, compounded by deleterious NLRP3 variants. Lubricin suppressed monosodium urate crystallization and blunted IL-1ß-induced increases in xanthine oxidase and urate in macrophages. The collective activities of articular lubricin that could limit incident and erosive gouty arthritis independently of hyperuricemia are subject to disruption by inflammation, activated cathepsin G, and synovial fibroblast TLR-2 signaling.
Asunto(s)
Artritis Gotosa , Gota , Hiperuricemia , Femenino , Humanos , Ratones , Animales , Receptor Toll-Like 2/genética , Catepsina G/efectos adversos , Ácido Úrico , Proteína con Dominio Pirina 3 de la Familia NLR , Xantina Oxidasa , Gota/genética , Inflamación/metabolismo , Interleucina-1beta/metabolismoRESUMEN
Identifying population-specific genetic variants associated with disease and disease-predisposing traits is important to provide insights into the genetic determinants of health and disease between populations, as well as furthering genomic justice. Various common pan-population polymorphisms at CETP associate with serum lipid profiles and cardiovascular disease. Here, sequencing of CETP identified a missense variant rs1597000001 (p.Pro177Leu) specific to Maori and Pacific people that associates with higher HDL-C and lower LDL-C levels. Each copy of the minor allele associated with higher HDL-C by 0.236 mmol/L and lower LDL-C by 0.133 mmol/L. The rs1597000001 effect on HDL-C is comparable with CETP Mendelian loss-of-function mutations that result in CETP deficiency, consistent with our data, which shows that rs1597000001 lowers CETP activity by 27.9%. This study highlights the potential of population-specific genetic analyses for improving equity in genomics and health outcomes for population groups underrepresented in genomic studies.
Asunto(s)
Pueblo Maorí , Pueblos Isleños del Pacífico , Humanos , LDL-Colesterol , HDL-Colesterol/genética , Polimorfismo Genético , Proteínas de Transferencia de Ésteres de Colesterol/genéticaRESUMEN
OBJECTIVE: To determine whether a gout polygenic risk score (PRS) is associated with age at gout onset and tophaceous disease in European, East Polynesian, and West Polynesian men and women with gout. METHODS: A 19-variant gout PRS was produced in 7 European gout cohorts (N = 4,016), 2 East Polynesian gout cohorts (N = 682), and 1 West Polynesian gout cohort (N = 490). Sex-stratified regression models were used to estimate the relationship between the PRS and age at gout onset and tophaceous disease. RESULTS: The PRS was associated with earlier age at gout onset in men (ß = -3.61 in years per unit PRS [95% confidence interval (95% CI) -4.32, -2.90] in European men; ß = -6.35 [95% CI -8.91, -3.80] in East Polynesian men; ß = -3.51 [95% CI -5.46, -1.57] in West Polynesian men) but not in women (ß = 0.07 [95% CI -2.32, 2.45] in European women; ß = 0.20 [95% CI -7.21, 7.62] in East Polynesian women; ß -3.33 [95% CI -9.28, 2.62] in West Polynesian women). The PRS showed a positive association with tophaceous disease in men (odds ratio [OR] for the association 1.15 [95% CI 1.00, 1.31] in European men; OR 2.60 [95% CI 1.66, 4.06] in East Polynesian men; OR 1.53 [95% CI 1.07, 2.19] in West Polynesian men) but not in women (OR for the association 0.68 [95% CI 0.42, 1.10] in European women; OR 1.45 [95% CI 0.39, 5.36] in East Polynesian women). The PRS association with age at gout onset was robust to the removal of ABCG2 variants from the PRS in European and East Polynesian men (ß = -2.42 [95% CI -3.37, -1.46] and ß = -6.80 [95% CI -10.06, -3.55], respectively) but not in West Polynesian men (ß = -1.79 [95% CI -4.74, 1.16]). CONCLUSION: Genetic risk variants for gout also harbor risk for earlier age at gout onset and tophaceous disease in European and Polynesian men. Our findings suggest that earlier gout onset involves the accumulation of gout risk alleles in men but perhaps not in women, and that this genetic risk is shared across multiple ancestral groups.