Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomater Res ; 28: 0059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076894

RESUMEN

In osteoarthritis (OA), articular cartilage is continuously submerged in a hypoxic environment throughout life, and hypoxia-inducible factors (HIFs) play a crucial role in OA progression. Among the various HIF phenotypes, HIF-1α positively contributes to maintaining the stability of the articular cartilage matrix. In contrast, HIF-2α has a detrimental effect, leading to chondrocyte apoptosis and exacerbating inflammation. Notably, there is currently no simultaneous regulation of HIF-1α and HIF-2α for OA treatment. Thus, the biomimetic gene vector (MENP) was developed for co-delivery of siHIF-2α and Mg2+ to the inflamed regions in OA joints, comprising an inner core consisting of siHIF-2α and Mg2+ and an outer M2 macrophage membrane. In vitro and in vivo studies demonstrate that MENP effectively targets inflamed areas, efficiently silences HIF-2α, and facilitates HIF-1α-mediated cartilage restoration through Mg2+. Furthermore, it indirectly promotes the polarization of macrophages toward an anti-inflammatory M2 phenotype through its action on inflamed synoviocytes. Overall, MENP is an efficient biomimetic vehicle for alleviating inflammation and promoting cartilage repair, representing an appealing approach for OA treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA