Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38942013

RESUMEN

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estrés Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Concentración de Iones de Hidrógeno , Gránulos de Estrés/metabolismo
2.
Mol Cell ; 49(1): 109-20, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23177738

RESUMEN

Nuclear pore complexes (NPCs) and kinetochores perform distinct tasks, yet their shared ability to bind several proteins suggests their functions are intertwined. Among these shared proteins is Mad1p, a component of the yeast spindle assembly checkpoint (SAC). Here we describe a role for Mad1p in regulating nuclear import that employs its ability to sense a disruption of kinetochore-microtubule interactions during mitosis. We show that kinetochore-microtubule detachment arrests nuclear import mediated by the transport factor Kap121p through a mechanism that requires Mad1p cycling between unattached, metaphase kinetochores and binding sites at the NPC. This signaling pathway requires the Aurora B-like kinase Ipl1p, and the resulting transport changes inhibit the nuclear import of Glc7p, a phosphatase that acts as an Ipl1p antagonist. We propose that a distinct branch of the SAC exists in which Mad1p senses unattached kinetochores and, by altering NPC transport activity, regulates the nuclear environment of the spindle.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Metafase , Microtúbulos/metabolismo , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Transporte Activo de Núcleo Celular , Aurora Quinasas , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinetocoros/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitosis , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
3.
Cell Rep ; 31(9): 107680, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492414

RESUMEN

The formation of insoluble inclusions in the cytosol and nucleus is associated with impaired protein homeostasis and is a hallmark of several neurodegenerative diseases. Due to the absence of the autophagic machinery, nuclear protein aggregates require a solubilization step preceding degradation by the 26S proteasome. Using yeast, we identify a nuclear protein quality control pathway required for the clearance of protein aggregates. The nuclear J-domain protein Apj1 supports protein disaggregation together with Hsp70 but independent of the canonical disaggregase Hsp104. Disaggregation mediated by Apj1/Hsp70 promotes turnover rather than refolding. A loss of Apj1 activity uncouples disaggregation from proteasomal turnover, resulting in accumulation of toxic soluble protein species. Endogenous substrates of the Apj1/Hsp70 pathway include both nuclear and cytoplasmic proteins, which aggregate inside the nucleus upon proteotoxic stress. These findings demonstrate the coordinated activity of the Apj1/Hsp70 disaggregation system with the 26S proteasome in facilitating the clearance of toxic inclusions inside the nucleus.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Nucleares/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
4.
Cell Rep ; 14(10): 2440-50, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26947076

RESUMEN

The karyopherin (Kap) family of nuclear transport factors facilitates macromolecular transport through nuclear pore complexes (NPCs). The binding of Kaps to their cargos can also regulate, both temporally and spatially, the interactions of the cargo protein with interacting partners. Here, we show that the essential yeast Kap, Kap121, binds Dam1 and Duo1, components of the microtubule (MT)-associated Dam1 complex required for linking dynamic MT ends with kinetochores (KTs). Like mutations in the Dam1 complex, loss of Kap121 function compromises the formation of normal KT-MT attachments during mitosis. We show that the stability of the Dam1 complex in vivo is dependent on its association with Kap121. Furthermore, we show that the Kap121/Duo1 complex is maintained in the presence of RanGTP but Kap121 is released by the cooperative actions of RanGTP and tubulin. We propose that Kap121 stabilizes the Dam1 complex and participates in escorting it to spindle MTs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/química , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/metabolismo , Unión Proteica , Estabilidad Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Tubulina (Proteína)/metabolismo , Proteína de Unión al GTP ran/metabolismo
5.
Nucleus ; 4(5): 367-73, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24076561

RESUMEN

Nuclear transport is a dynamic process that can be modulated in response to changes in cellular physiology. We recently reported that the transport activity of yeast nuclear pore complexes (NPCs) is altered in response to kinetochore-microtubule (KT-MT) interaction defects. Specifically, KT detachment from MTs activates a signaling pathway that prevents the nuclear import of cargos by the nuclear transport factor Kap121p. This loss of Kap121p-mediated import is thought to influence the nuclear environment, including the phosphorylation state of nuclear proteins. A key regulator of this process is the spindle assembly checkpoint protein Mad1p. In response to unattached KTs, Mad1p dynamically cycles between NPCs and KTs. This cycling appears to induce NPC molecular rearrangements that prevent the nuclear import of Kap121p-cargo complexes. Here, we discuss the underlying mechanisms and the physiological relevance of Mad1p cycling and the inhibition of Kap121p-mediated nuclear import, focusing on outstanding questions within the pathway.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Huso Acromático/metabolismo , Transporte Activo de Núcleo Celular , Animales , Receptores Citoplasmáticos y Nucleares/metabolismo
6.
Am J Physiol Renal Physiol ; 296(4): F875-83, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19158344

RESUMEN

The acute phase response is traditionally characterized by hepatic synthesis of proteins as an inflammatory response to injury, with interleukin-6 (IL-6) being the key mediator. In contrast, microarray studies in human renal transplant implantation biopsies indicate a strong acute phase response in the deceased donor kidney, associated with a significant upregulation of oncostatin M receptor beta (OSMR). The aim of this study was to determine whether the kidney can generate a strong acute phase response, mediated by the OSM/OSMR gateway. Genes associated with the IL-6 cytokine family and acute phase reactants were analyzed by real-time RT-PCR in four groups of human biopsies spanning a spectrum of renal injury. OSM, OSMR, and fibrinogen beta (FGB) were progressively more highly expressed from prenephrectomy, living donor, deceased donor, to discarded donor kidneys, suggesting correlation with severity of injury and local renal synthesis. Acute phase response gene expression was analyzed in human proximal tubular cells in culture in response to OSM. OSM induced a significant increase in expression of FGB, OSMR, serpin peptidase inhibitor A1, IL-6, and lipopolysaccharide binding protein, and a decrease in IL-6R. These changes were largely attenuated by coincubation with an OSMR blocking antibody, indicating the OSM effect was mediated through OSMR. OSM also resulted in a significantly altered expression of acute phase genes compared with IL-6 or leukemia inhibitory factor, suggesting that OSM is the predominant cytokine mediating the renal tubular acute phase response. In conclusion, the renal parenchyma is capable of generating a strong acute phase response, likely mediated via OSM/OSMR.


Asunto(s)
Reacción de Fase Aguda/inmunología , Trasplante de Riñón/inmunología , Túbulos Renales/inmunología , Subunidad beta del Receptor de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Transducción de Señal , Proteínas de Fase Aguda/metabolismo , Reacción de Fase Aguda/genética , Reacción de Fase Aguda/patología , Biopsia , Proteínas Portadoras/metabolismo , Células Cultivadas , Fibrinógeno/metabolismo , Perfilación de la Expresión Génica/métodos , Supervivencia de Injerto/inmunología , Humanos , Interleucina-6/metabolismo , Túbulos Renales/patología , Túbulos Renales/cirugía , Donadores Vivos , Glicoproteínas de Membrana/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/genética , Receptores de Interleucina-6/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Índice de Severidad de la Enfermedad , alfa 1-Antitripsina/metabolismo
7.
J Cell Biol ; 184(1): 21-9, 2009 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-19139260

RESUMEN

Nuclear pore complexes (NPCs) mediate all nucleocytoplasmic traffic and provide docking sites for the spindle assembly checkpoint (SAC) protein Mad1p. Upon SAC activation, Mad1p is recruited onto kinetochores and rapidly cycles between NPCs and kinetochores. We examined the mechanism of Mad1p movement onto kinetochores and show that it is controlled by two components of the nuclear transport machinery, the exportin Xpo1p and Ran-guanosine triphosphate (GTP). Mad1p contains a nuclear export signal (NES) that is recognized by Xpo1p. The NES, Xpo1p, and RanGTP are all required for Mad1p recruitment onto kinetochores in checkpoint-activated cells. Consistent with this function, Xpo1p also accumulates on kinetochores after SAC activation. We have also shown that Xpo1p and RanGTP are required for the dynamic cycling of Mad1p between NPCs and kinetochores in checkpoint-arrested cells. These results reveal an important function for Xpo1p in mediating intranuclear transport events and identify a signaling pathway between kinetochores and NPCs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Carioferinas/fisiología , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Levaduras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Carioferinas/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/química , Señales de Clasificación de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Huso Acromático/metabolismo , Levaduras/citología , Proteína de Unión al GTP ran/metabolismo , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA