Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(7): 1284-1298.e3, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35779527

RESUMEN

While studies have elucidated many pathophysiological elements of COVID-19, little is known about immunological changes during COVID-19 resolution. We analyzed immune cells and phosphorylated signaling states at single-cell resolution from longitudinal blood samples of patients hospitalized with COVID-19, pneumonia and/or sepsis, and healthy individuals by mass cytometry. COVID-19 patients showed distinct immune compositions and an early, coordinated, and elevated immune cell signaling profile associated with early hospital discharge. Intra-patient longitudinal analysis revealed changes in myeloid and T cell frequencies and a reduction in immune cell signaling across cell types that accompanied disease resolution and discharge. These changes, together with increases in regulatory T cells and reduced signaling in basophils, also accompanied recovery from respiratory failure and were associated with better outcomes at time of admission. Therefore, although patients have heterogeneous immunological baselines and highly variable disease courses, a core immunological trajectory exists that defines recovery from severe SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Neumonía , Progresión de la Enfermedad , Humanos , SARS-CoV-2
2.
N Engl J Med ; 389(25): 2341-2354, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37888913

RESUMEN

BACKGROUND: The efficacy of simvastatin in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: In an ongoing international, multifactorial, adaptive platform, randomized, controlled trial, we evaluated simvastatin (80 mg daily) as compared with no statin (control) in critically ill patients with Covid-19 who were not receiving statins at baseline. The primary outcome was respiratory and cardiovascular organ support-free days, assessed on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support through day 21 in survivors; the analyis used a Bayesian hierarchical ordinal model. The adaptive design included prespecified statistical stopping criteria for superiority (>99% posterior probability that the odds ratio was >1) and futility (>95% posterior probability that the odds ratio was <1.2). RESULTS: Enrollment began on October 28, 2020. On January 8, 2023, enrollment was closed on the basis of a low anticipated likelihood that prespecified stopping criteria would be met as Covid-19 cases decreased. The final analysis included 2684 critically ill patients. The median number of organ support-free days was 11 (interquartile range, -1 to 17) in the simvastatin group and 7 (interquartile range, -1 to 16) in the control group; the posterior median adjusted odds ratio was 1.15 (95% credible interval, 0.98 to 1.34) for simvastatin as compared with control, yielding a 95.9% posterior probability of superiority. At 90 days, the hazard ratio for survival was 1.12 (95% credible interval, 0.95 to 1.32), yielding a 91.9% posterior probability of superiority of simvastatin. The results of secondary analyses were consistent with those of the primary analysis. Serious adverse events, such as elevated levels of liver enzymes and creatine kinase, were reported more frequently with simvastatin than with control. CONCLUSIONS: Although recruitment was stopped because cases had decreased, among critically ill patients with Covid-19, simvastatin did not meet the prespecified criteria for superiority to control. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Asunto(s)
COVID-19 , Enfermedad Crítica , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Simvastatina , Humanos , Teorema de Bayes , COVID-19/mortalidad , COVID-19/terapia , Tratamiento Farmacológico de COVID-19 , Enfermedad Crítica/mortalidad , Enfermedad Crítica/terapia , Mortalidad Hospitalaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Simvastatina/uso terapéutico , Resultado del Tratamiento
3.
Annu Rev Med ; 74: 457-471, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36469902

RESUMEN

Heterogeneity in sepsis and acute respiratory distress syndrome (ARDS) is increasingly being recognized as one of the principal barriers to finding efficacious targeted therapies. The advent of multiple high-throughput biological data ("omics"), coupled with the widespread access to increased computational power, has led to the emergence of phenotyping in critical care. Phenotyping aims to use a multitude of data to identify homogenous subgroups within an otherwise heterogenous population. Increasingly, phenotyping schemas are being applied to sepsis and ARDS to increase understanding of these clinical conditions and identify potential therapies. Here we present a selective review of the biological phenotyping schemas applied to sepsis and ARDS. Further, we outline some of the challenges involved in translating these conceptual findings to bedside clinical decision-making tools.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Síndrome de Dificultad Respiratoria/terapia
4.
Am J Respir Crit Care Med ; 209(7): 805-815, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190719

RESUMEN

Rationale: Two molecular phenotypes of sepsis and acute respiratory distress syndrome, termed hyperinflammatory and hypoinflammatory, have been consistently identified by latent class analysis in numerous cohorts, with widely divergent clinical outcomes and differential responses to some treatments; however, the key biological differences between these phenotypes remain poorly understood.Objectives: We used host and microbe metagenomic sequencing data from blood to deepen our understanding of biological differences between latent class analysis-derived phenotypes and to assess concordance between the latent class analysis-derived phenotypes and phenotypes reported by other investigative groups (e.g., Sepsis Response Signature [SRS1-2], molecular diagnosis and risk stratification of sepsis [MARS1-4], reactive and uninflamed).Methods: We analyzed data from 113 patients with hypoinflammatory sepsis and 76 patients with hyperinflammatory sepsis enrolled in a two-hospital prospective cohort study. Molecular phenotypes had been previously assigned using latent class analysis.Measurements and Main Results: The hyperinflammatory and hypoinflammatory phenotypes of sepsis had distinct gene expression signatures, with 5,755 genes (31%) differentially expressed. The hyperinflammatory phenotype was associated with elevated expression of innate immune response genes, whereas the hypoinflammatory phenotype was associated with elevated expression of adaptive immune response genes and, notably, T cell response genes. Plasma metagenomic analysis identified differences in prevalence of bacteremia, bacterial DNA abundance, and composition between the phenotypes, with an increased presence and abundance of Enterobacteriaceae in the hyperinflammatory phenotype. Significant overlap was observed between these phenotypes and previously identified transcriptional subtypes of acute respiratory distress syndrome (reactive and uninflamed) and sepsis (SRS1-2). Analysis of data from the VANISH trial indicated that corticosteroids might have a detrimental effect in patients with the hypoinflammatory phenotype.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have distinct transcriptional and metagenomic features that could be leveraged for precision treatment strategies.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Estudios Prospectivos , Enfermedad Crítica , Fenotipo , Sepsis/genética , Sepsis/complicaciones , Síndrome de Dificultad Respiratoria/complicaciones
5.
Am J Respir Crit Care Med ; 209(7): 816-828, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345571

RESUMEN

Rationale: Two molecular phenotypes have been identified in acute respiratory distress syndrome (ARDS). In the ROSE (Reevaluation of Systemic Early Neuromuscular Blockade) trial of cisatracurium in moderate to severe ARDS, we addressed three unanswered questions: 1) Do the same phenotypes emerge in a more severe ARDS cohort with earlier recruitment; 2) Do phenotypes respond differently to neuromuscular blockade? and 3) What biological pathways most differentiate inflammatory phenotypes?Methods: We performed latent class analysis in ROSE using preenrollment clinical and protein biomarkers. In a subset of patients (n = 134), we sequenced whole-blood RNA using enrollment and Day 2 samples and performed differential gene expression and pathway analyses. Informed by the differential gene expression analysis, we measured additional plasma proteins and evaluated their abundance relative to gene expression amounts.Measurements and Main Results: In ROSE, we identified the hypoinflammatory (60.4%) and hyperinflammatory (39.6%) phenotypes with similar biological and clinical characteristics as prior studies, including higher mortality at Day 90 for the hyperinflammatory phenotype (30.3% vs. 61.6%; P < 0.0001). We observed no treatment interaction between the phenotypes and randomized groups for mortality. The hyperinflammatory phenotype was enriched for genes associated with innate immune response, tissue remodeling, and zinc metabolism at Day 0 and collagen synthesis and neutrophil degranulation at Day 2. Longitudinal changes in gene expression patterns differed dependent on survivorship. For most highly expressed genes, we observed correlations with their corresponding plasma proteins' abundance. However, for the class-defining plasma proteins in the latent class analysis, no correlation was observed with their corresponding genes' expression.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have different clinical, protein, and dynamic transcriptional characteristics. These findings support the clinical and biological potential of molecular phenotypes to advance precision care in ARDS.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Fenotipo , Biomarcadores , Proteínas Sanguíneas/genética , Expresión Génica
6.
Am J Respir Crit Care Med ; 209(8): 973-986, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38240721

RESUMEN

Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Sepsis , Humanos , Lipidómica , Neumonía/complicaciones , Sepsis/complicaciones , Lípidos , Índice de Severidad de la Enfermedad , Unidades de Cuidados Intensivos
7.
Am J Respir Crit Care Med ; 209(1): 37-47, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487152

RESUMEN

Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings. Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers. Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of ⩾30 L/min; 2) use PaO2:FiO2 ⩽ 300 mm Hg or oxygen saturation as measured by pulse oximetry SpO2:FiO2 ⩽ 315 (if oxygen saturation as measured by pulse oximetry is ⩽97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resource-limited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices. Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/terapia , Oximetría , Oxígeno
8.
Am J Respir Crit Care Med ; 209(1): 91-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734031

RESUMEN

Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation. Prior studies implicated proxy-defined donor smoking as a risk factor for PGD and mortality. Objectives: We aimed to more accurately assess the impact of donor smoke exposure on PGD and mortality using quantitative smoke exposure biomarkers. Methods: We performed a multicenter prospective cohort study of lung transplant recipients enrolled in the Lung Transplant Outcomes Group cohort between 2012 and 2018. PGD was defined as grade 3 at 48 or 72 hours after lung reperfusion. Donor smoking was defined using accepted thresholds of urinary biomarkers of nicotine exposure (cotinine) and tobacco-specific nitrosamine (4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL]) in addition to clinical history. The donor smoking-PGD association was assessed using logistic regression, and survival analysis was performed using inverse probability of exposure weighting according to smoking category. Measurements and Main Results: Active donor smoking prevalence varied by definition, with 34-43% based on urinary cotinine, 28% by urinary NNAL, and 37% by clinical documentation. The standardized risk of PGD associated with active donor smoking was higher across all definitions, with an absolute risk increase of 11.5% (95% confidence interval [CI], 3.8% to 19.2%) by urinary cotinine, 5.7% (95% CI, -3.4% to 14.9%) by urinary NNAL, and 6.5% (95% CI, -2.8% to 15.8%) defined clinically. Donor smoking was not associated with differential post-lung transplant survival using any definition. Conclusions: Donor smoking associates with a modest increase in PGD risk but not with increased recipient mortality. Use of lungs from smokers is likely safe and may increase lung donor availability. Clinical trial registered with www.clinicaltrials.gov (NCT00552357).


Asunto(s)
Trasplante de Pulmón , Disfunción Primaria del Injerto , Fumar , Donantes de Tejidos , Humanos , Biomarcadores , Cotinina , Trasplante de Pulmón/efectos adversos , Disfunción Primaria del Injerto/epidemiología , Estudios Prospectivos , Fumar/efectos adversos
9.
Artículo en Inglés | MEDLINE | ID: mdl-38687499

RESUMEN

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. In order to impact clinical care, identified subpopulations must do more than differentiate prognosis. They must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

10.
Artículo en Inglés | MEDLINE | ID: mdl-38772909

RESUMEN

Neutrophils are the first leukocytes to be recruited to sites of inflammation in response to chemotactic factors released by activated macrophages and pulmonary epithelial and endothelial cells in bacterial pneumonia, a common cause of acute respiratory distress syndrome (ARDS). Although neutrophilic inflammation facilitates the elimination of pathogens, neutrophils also may cause bystander tissue injury. Even though neutrophils in alveolar spaces is a key feature of acute lung injury and ARDS especially from pneumonia, their contribution to the pathogenesis of lung injury is uncertain. The goal of this study was to elucidate the role of neutrophils in a clinically relevant model of bacterial pneumonia. We investigated the effect of reducing neutrophils in a mouse model of pneumococcal pneumonia treated with antibiotics. Neutrophils were reduced with anti-Ly6G monoclonal antibody 24 hours before and immediately preceding infection. Mice were inoculated intranasally with Streptococcus pneumoniae and received ceftriaxone 12 hours after bacterial inoculation. Neutrophil reduction in mice treated with ceftriaxone attenuated hypoxemia, alveolar permeability, epithelial injury, pulmonary edema, and inflammatory biomarker release induced by bacterial pneumonia, even though bacterial loads in the distal air spaces of the lung were modestly increased as compared to antibiotic treatment alone. Thus, when appropriate antibiotics are administered, lung injury in the early phase of bacterial pneumonia is mediated in part by neutrophils. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.

11.
Thorax ; 79(3): 227-235, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38148147

RESUMEN

BACKGROUND: Inflammatory subphenotypes have been identified in acute respiratory distress syndrome (ARDS). Hyperferritinaemia in sepsis is associated with hyperinflammation, worse clinical outcomes, and may predict benefit with immunomodulation. Our aim was to determine if raised ferritin identified a subphenotype in patients with ARDS. METHODS: Baseline plasma ferritin concentrations were measured in patients with ARDS from two randomised controlled trials of simvastatin (Hydroxymethylglutaryl-CoA Reductase Inhibition with Simvastatin in Acute Lung Injury to Reduce Pulmonary Dysfunction-2 (HARP-2); discovery cohort, UK) and neuromuscular blockade (ROSE; validation cohort, USA). Results were analysed using a logistic regression model with restricted cubic splines, to determine the ferritin threshold associated with 28-day mortality. RESULTS: Ferritin was measured in 511 patients from HARP-2 (95% of patients enrolled) and 847 patients (84% of patients enrolled) from ROSE. Ferritin was consistently associated with 28-day mortality in both studies and following a meta-analysis, a log-fold increase in ferritin was associated with an OR 1.71 (95% CI 1.01 to 2.90) for 28-day mortality. Patients with ferritin >1380 ng/mL (HARP-2 28%, ROSE 24%) had a significantly higher 28-day mortality and fewer ventilator-free days in both studies. Mediation analysis, including confounders (acute physiology and chronic health evaluation-II score and ARDS aetiology) demonstrated a statistically significant contribution of interleukin (IL)-18 as an intermediate pathway between ferritin and mortality. CONCLUSIONS: Ferritin is a clinically useful biomarker in ARDS and is associated with worse patient outcomes. These results provide support for prospective interventional trials of immunomodulatory agents targeting IL-18 in this hyperferritinaemic subgroup of patients with ARDS.


Asunto(s)
Interleucina-18 , Síndrome de Dificultad Respiratoria , Humanos , Estudios Prospectivos , Simvastatina , Síndrome de Dificultad Respiratoria/etiología , Inflamación
12.
Crit Care ; 28(1): 185, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807178

RESUMEN

BACKGROUND: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The primary objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in a mouse model. A secondary objective was to identify shared transcriptomic features of pneumococcal pneumonia and steroid treatment in the mouse model and clinical samples. METHODS: We carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. We also studied lower respiratory tract gene expression from a cohort of 15 mechanically ventilated patients (10 with Streptococcus pneumoniae and 5 controls) to compare with the transcriptional studies in the mice. RESULTS: In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Transcriptomic analyses identified effects of steroid therapy in mice that were also observed in the clinical samples. CONCLUSIONS: In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The transcriptional studies in patients suggest that the mouse model replicates some of the features of pneumonia in patients with Streptococcus pneumoniae and steroid treatment. Overall, these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.


Asunto(s)
Corticoesteroides , Modelos Animales de Enfermedad , Neumonía Neumocócica , Animales , Neumonía Neumocócica/tratamiento farmacológico , Ratones , Corticoesteroides/uso terapéutico , Corticoesteroides/farmacología , Humanos , Dexametasona/farmacología , Dexametasona/uso terapéutico , Femenino , Masculino , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/patogenicidad
13.
Crit Care ; 28(1): 56, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383504

RESUMEN

BACKGROUND: Despite evidence associating inflammatory biomarkers with worse outcomes in hospitalized adults with COVID-19, trials of immunomodulatory therapies have met with mixed results, likely due in part to biological heterogeneity of participants. Latent class analysis (LCA) of clinical and protein biomarker data has identified two subtypes of non-COVID acute respiratory distress syndrome (ARDS) with different clinical outcomes and treatment responses. We studied biological heterogeneity and clinical outcomes in a multi-institutional platform randomized controlled trial of adults with severe COVID-19 hypoxemic respiratory failure (I-SPY COVID). METHODS: Clinical and plasma protein biomarker data were analyzed from 400 trial participants enrolled from September 2020 until October 2021 with severe COVID-19 requiring ≥ 6 L/min supplemental oxygen. Seventeen hypothesis-directed protein biomarkers were measured at enrollment using multiplex Luminex panels or single analyte enzyme linked immunoassay methods (ELISA). Biomarkers and clinical variables were used to test for latent subtypes and longitudinal biomarker changes by subtype were explored. A validated parsimonious model using interleukin-8, bicarbonate, and protein C was used for comparison with non-COVID hyper- and hypo-inflammatory ARDS subtypes. RESULTS: Average participant age was 60 ± 14 years; 67% were male, and 28-day mortality was 25%. At trial enrollment, 85% of participants required high flow oxygen or non-invasive ventilation, and 97% were receiving dexamethasone. Several biomarkers of inflammation (IL-6, IL-8, IL-10, sTNFR-1, TREM-1), epithelial injury (sRAGE), and endothelial injury (Ang-1, thrombomodulin) were associated with 28- and 60-day mortality. Two latent subtypes were identified. Subtype 2 (27% of participants) was characterized by persistent derangements in biomarkers of inflammation, endothelial and epithelial injury, and disordered coagulation and had twice the mortality rate compared with Subtype 1. Only one person was classified as hyper-inflammatory using the previously validated non-COVID ARDS model. CONCLUSIONS: We discovered evidence of two novel biological subtypes of severe COVID-19 with significantly different clinical outcomes. These subtypes differed from previously established hyper- and hypo-inflammatory non-COVID subtypes of ARDS. Biological heterogeneity may explain inconsistent findings from trials of hospitalized patients with COVID-19 and guide treatment approaches.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Adulto , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , SARS-CoV-2 , Inflamación , Síndrome de Dificultad Respiratoria/terapia , Oxígeno , Insuficiencia Respiratoria/terapia , Biomarcadores
14.
Crit Care ; 28(1): 164, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745253

RESUMEN

BACKGROUND: Hypoinflammatory and hyperinflammatory phenotypes have been identified in both Acute Respiratory Distress Syndrome (ARDS) and sepsis. Attributable mortality of ARDS in each phenotype of sepsis is yet to be determined. We aimed to estimate the population attributable fraction of death from ARDS (PAFARDS) in hypoinflammatory and hyperinflammatory sepsis, and to determine the primary cause of death within each phenotype. METHODS: We studied 1737 patients with sepsis from two prospective cohorts. Patients were previously assigned to the hyperinflammatory or hypoinflammatory phenotype using latent class analysis. The PAFARDS in patients with sepsis was estimated separately in the hypo and hyperinflammatory phenotypes. Organ dysfunction, severe comorbidities, and withdrawal of life support were abstracted from the medical record in a subset of patients from the EARLI cohort who died (n = 130/179). Primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support. RESULTS: The PAFARDS was 19% (95%CI 10,28%) in hypoinflammatory sepsis and, 14% (95%CI 6,20%) in hyperinflammatory sepsis. Cause of death differed between the two phenotypes (p < 0.001). Respiratory failure was the most common cause of death in hypoinflammatory sepsis, whereas circulatory shock was the most common cause in hyperinflammatory sepsis. Death with severe underlying comorbidities was more frequent in hypoinflammatory sepsis (81% vs. 67%, p = 0.004). CONCLUSIONS: The PAFARDS is modest in both phenotypes whereas primary cause of death among patients with sepsis differed substantially by phenotype. This study identifies challenges in powering future clinical trials to detect changes in mortality outcomes among patients with sepsis and ARDS.


Asunto(s)
Fenotipo , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Sepsis/mortalidad , Sepsis/complicaciones , Sepsis/fisiopatología , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Causas de Muerte/tendencias , Estudios de Cohortes , Inflamación
15.
Crit Care ; 28(1): 132, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649920

RESUMEN

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Asunto(s)
Biomarcadores , Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Biomarcadores/sangre , Biomarcadores/análisis , Respiración Artificial/métodos , Respiración Artificial/estadística & datos numéricos , Adulto , Estudios de Cohortes , Hipoxia/sangre
16.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L297-L306, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648136

RESUMEN

Using latent class analysis (LCA) of clinical and protein biomarkers, researchers have identified two phenotypes of the acute respiratory distress syndrome (ARDS) with divergent clinical trajectories and treatment responses. We investigated whether plasma metabolites differed among patients with LCA-derived hyperinflammatory and hypoinflammatory ARDS, and we tested the prognostic utility of adding metabolic clusters to LCA phenotypes. We analyzed data from 93 patients with ARDS and sepsis enrolled in a multicenter prospective cohort of critically ill patients, comparing 970 metabolites between the two LCA-derived phenotypes. In all, 188 metabolites were differentially abundant between the two LCA-derived phenotypes. After adjusting for age, sex, confounding medications, and comorbid liver and kidney disease, 82 metabolites remained significantly different. Patients with hyperinflammatory ARDS had reduced circulating lipids but high levels of pyruvate, lactate, and malate. Metabolic cluster and LCA-derived phenotypes were each significantly and independently associated with survival. Patients with hyperinflammatory ARDS may be experiencing a glycolytic shift leading to dysregulated lipid metabolism. Metabolic profiling offers prognostic information beyond what is captured by LCA phenotypes alone. Deeper biological profiling may identify key differences in pathogenesis among patients with ARDS and may lead to novel targeted therapies.


Asunto(s)
Metabolismo de los Lípidos , Síndrome de Dificultad Respiratoria , Humanos , Estudios Prospectivos , Biomarcadores , Fenotipo , Síndrome de Dificultad Respiratoria/terapia
17.
Am J Transplant ; 23(4): 531-539, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36740192

RESUMEN

Heterogeneous frailty pathobiology might explain the inconsistent associations observed between frailty and lung transplant outcomes. A Subphenotype analysis could refine frailty measurement. In a 3-center pilot cohort study, we measured frailty by the Short Physical Performance Battery, body composition, and serum biomarkers reflecting causes of frailty. We applied latent class modeling for these baseline data. Next, we tested class construct validity with disability, waitlist delisting/death, and early postoperative complications. Among 422 lung transplant candidates, 2 class model fit the best (P = .01). Compared with Subphenotype 1 (n = 333), Subphenotype 2 (n = 89) was characterized by systemic and innate inflammation (higher IL-6, CRP, PTX3, TNF-R1, and IL-1RA); mitochondrial stress (higher GDF-15 and FGF-21); sarcopenia; malnutrition; and lower hemoglobin and walk distance. Subphenotype 2 had a worse disability and higher risk of waitlist delisting or death (hazards ratio: 4.0; 95% confidence interval: 1.8-9.1). Of the total cohort, 257 underwent transplant (Subphenotype 1: 196; Subphenotype 2: 61). Subphenotype 2 had a higher need for take back to the operating room (48% vs 28%; P = .005) and longer posttransplant hospital length of stay (21 days [interquartile range: 14-33] vs 18 days [14-28]; P = .04). Subphenotype 2 trended toward fewer ventilator-free days, needing more postoperative extracorporeal membrane oxygenation and dialysis, and higher need for discharge to rehabilitation facilities (P ≤ .20). In this early phase study, we identified biological frailty Subphenotypes in lung transplant candidates. A hyperinflammatory, sarcopenic Subphenotype seems to be associated with worse clinical outcomes.


Asunto(s)
Fragilidad , Trasplante de Pulmón , Humanos , Fragilidad/complicaciones , Proyectos Piloto , Estudios de Cohortes , Biomarcadores
18.
Thorax ; 78(10): 990-1003, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495364

RESUMEN

BACKGROUND: Efficiency of randomised clinical trials of acute respiratory distress syndrome (ARDS) depends on the fraction of deaths attributable to ARDS (AFARDS) to which interventions are targeted. Estimates of AFARDS in subpopulations of ARDS could improve design of ARDS trials. METHODS: We performed a matched case-control study using the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE cohort. Primary outcome was intensive care unit mortality. We used nearest neighbour propensity score matching without replacement to match ARDS to non-ARDS populations. We derived two separate AFARDS estimates by matching patients with ARDS to patients with non-acute hypoxaemic respiratory failure (non-AHRF) and to patients with AHRF with unilateral infiltrates only (AHRF-UL). We also estimated AFARDS in subgroups based on severity of hypoxaemia, number of lung quadrants involved and hyperinflammatory versus hypoinflammatory phenotypes. Additionally, we derived AFAHRF estimates by matching patients with AHRF to non-AHRF controls, and AFAHRF-UL estimates by matching patients with AHRF-UL to non-AHRF controls. RESULTS: Estimated AFARDS was 20.9% (95% CI 10.5% to 31.4%) when compared with AHRF-UL controls and 38.0% (95% CI 34.4% to 41.6%) compared with non-AHRF controls. Within subgroups, estimates for AFARDS compared with AHRF-UL controls were highest in patients with severe hypoxaemia (41.1% (95% CI 25.2% to 57.1%)), in those with four quadrant involvement on chest radiography (28.9% (95% CI 13.4% to 44.3%)) and in the hyperinflammatory subphenotype (26.8% (95% CI 6.9% to 46.7%)). Estimated AFAHRF was 33.8% (95% CI 30.5% to 37.1%) compared with non-AHRF controls. Estimated AFAHRF-UL was 21.3% (95% CI 312.8% to 29.7%) compared with non-AHRF controls. CONCLUSIONS: Overall AFARDS mean values were between 20.9% and 38.0%, with higher AFARDS seen with severe hypoxaemia, four quadrant involvement on chest radiography and hyperinflammatory ARDS.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Estudios de Casos y Controles , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Pulmón , Hipoxia
19.
Crit Care Med ; 51(12): e269-e274, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695136

RESUMEN

OBJECTIVES: Interleukin-18 (IL-18) plasma level and latent class analysis (LCA) have separately been shown to predict prognosis and treatment response in acute respiratory distress syndrome (ARDS). IL-18 is a measure of inflammasome activation, a pathway potentially distinct from inflammation captured by biomarkers defining previously published LCA classes. We hypothesized that elevated IL-18 would identify distinct "high-risk" patients not captured by prior LCA classifications. DESIGN: Statins for acutely injured lungs from sepsis (SAILS) and hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction trial (HARP-2) are two large randomized, controlled trials in ARDS in which both LCA assignments and IL-18 levels were shown to predict mortality. We first evaluated the overlap between high IL-18 levels (≥ 800 pg/mL) with prior LCA class assignments using McNemar's test and then tested the correlation between IL-18 and LCA biomarkers using Pearson's exact test on log-2 transformed values. Our primary analysis was the association of IL-18 level with 60-day mortality in the hypoinflammatory LCA class, which was assessed using the Fisher exact test and Cox proportional hazards modeling adjusting for age, Acute Physiology and Chronic Health Evaluation score, and gender. Secondary analyses included the association of IL-18 and LCA with mortality within each IL-18/LCA subgroup. SETTING: Secondary analysis of two multicenter, randomized controlled clinical trials of ARDS patients. SUBJECTS: Six hundred eighty-three patients in SAILS and 511 patients in HARP-2. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We found that 33% of patients in SAILS and HARP-2 were discordant by IL-18 level and LCA class. We further found that IL-18 level was only modestly correlated (0.17-0.47) with cytokines used in the LCA assignment. A substantial subset of individuals classified as hypoinflammatory by LCA (14% of SAILS and 43% of HARP-2) were classified as high risk by elevated IL-18. These individuals were at high risk for mortality in both SAILS (42% 60-d mortality, odds ratio [OR] 3.3; 95% CI, 1.8-6.1; p < 0.001) and HARP-2 (27% 60-d mortality, OR 2.1; 95% CI, 1.2-3.8; p = 0.009). CONCLUSIONS: Plasma IL-18 level provides important additional prognostic information to LCA subphenotypes defined largely by traditional inflammatory biomarkers in two large ARDS cohorts.


Asunto(s)
Interleucina-18 , Síndrome de Dificultad Respiratoria , Humanos , Análisis de Clases Latentes , Estudios Retrospectivos , Citocinas , Ensayos Clínicos Controlados Aleatorios como Asunto , Síndrome de Dificultad Respiratoria/terapia , Biomarcadores , Interleucina-8
20.
Crit Care ; 27(1): 90, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36941644

RESUMEN

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .


Asunto(s)
Enfermedades Transmisibles , Medicina de Emergencia , Humanos , Cuidados Críticos , Enfermedades Transmisibles/diagnóstico , Enfermedad Crítica/terapia , Unidades de Cuidados Intensivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA