Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(7): 612-623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38176734

RESUMEN

Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.


Asunto(s)
Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Humanos , Biología , Mutación , Complejo Shelterina/genética , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
2.
FASEB J ; 38(13): e23725, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959016

RESUMEN

SLC40A1 is the sole iron export protein reported in mammals. In humans, its dysfunction is responsible for ferroportin disease, an inborn error of iron metabolism transmitted as an autosomal dominant trait and observed in different ethnic groups. As a member of the major facilitator superfamily, SLC40A1 requires a series of conformational changes to enable iron translocation across the plasma membrane. The influence of lipids on protein stability and its conformational changes has been little investigated to date. Here, we combine molecular dynamics simulations of SLC40A1 embedded in membrane bilayers with experimental alanine scanning mutagenesis to analyze the specific role of glycerophospholipids. We identify four basic residues (Lys90, Arg365, Lys366, and Arg371) that are located at the membrane-cytosol interface and consistently interact with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) molecules. These residues surround a network of salt bridges and hydrogens bonds that play a critical role in stabilizing SLC40A1 in its basal outward-facing conformation. More deeply embedded in the plasma membrane, we identify Arg179 as a charged amino acid residue also tightly interacting with lipid polar heads. This results in a local deformation of the lipid bilayer. Interestingly, Arg179 is adjacent to Arg178, which forms a functionally important salt-bridge with Asp473 and is a recurrently associated with ferroportin disease when mutated to glutamine. We demonstrate that the two p.Arg178Gln and p.Arg179Thr missense variants have similar functional behaviors. These observations provide insights into the role of phospholipids in the formation/disruption of the SLC40A1 inner gate, and give a better understanding of the diversity of molecular mechanisms of ferroportin disease.


Asunto(s)
Proteínas de Transporte de Catión , Hierro , Simulación de Dinámica Molecular , Humanos , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/química , Hierro/metabolismo , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/química , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química
3.
Proteins ; 92(6): 776-794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258321

RESUMEN

Three-dimensional (3D) structure information, now available at the proteome scale, may facilitate the detection of remote evolutionary relationships in protein superfamilies. Here, we illustrate this with the identification of a novel family of protein domains related to the ferredoxin-like superfold, by combining (i) transitive sequence similarity searches, (ii) clustering approaches, and (iii) the use of AlphaFold2 3D structure models. Domains of this family were initially identified in relation with the intracellular biomineralization of calcium carbonates by Cyanobacteria. They are part of the large heavy-metal-associated (HMA) superfamily, departing from the latter by specific sequence and structural features. In particular, most of them share conserved basic amino acids  (hence their name CoBaHMA for Conserved Basic residues HMA), forming a positively charged surface, which is likely to interact with anionic partners. CoBaHMA domains are found in diverse modular organizations in bacteria, existing in the form of monodomain proteins or as part of larger proteins, some of which are membrane proteins involved in transport or lipid metabolism. This suggests that the CoBaHMA domains may exert a regulatory function, involving interactions with anionic lipids. This hypothesis might have a particular resonance in the context of the compartmentalization observed for cyanobacterial intracellular calcium carbonates.


Asunto(s)
Secuencia de Aminoácidos , Proteínas Bacterianas , Metales Pesados , Modelos Moleculares , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Metales Pesados/química , Metales Pesados/metabolismo , Dominios Proteicos , Cianobacterias/metabolismo , Cianobacterias/química , Cianobacterias/genética , Ferredoxinas/química , Ferredoxinas/metabolismo , Pliegue de Proteína
4.
Genome Res ; 31(12): 2303-2315, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34810219

RESUMEN

The noncoding genome plays an important role in de novo gene birth and in the emergence of genetic novelty. Nevertheless, how noncoding sequences' properties could promote the birth of novel genes and shape the evolution and the structural diversity of proteins remains unclear. Therefore, by combining different bioinformatic approaches, we characterized the fold potential diversity of the amino acid sequences encoded by all intergenic open reading frames (ORFs) of S. cerevisiae with the aim of (1) exploring whether the structural states' diversity of proteomes is already present in noncoding sequences, and (2) estimating the potential of the noncoding genome to produce novel protein bricks that could either give rise to novel genes or be integrated into pre-existing proteins, thus participating in protein structure diversity and evolution. We showed that amino acid sequences encoded by most yeast intergenic ORFs contain the elementary building blocks of protein structures. Moreover, they encompass the large structural state diversity of canonical proteins, with the majority predicted as foldable. Then, we investigated the early stages of de novo gene birth by reconstructing the ancestral sequences of 70 yeast de novo genes and characterized the sequence and structural properties of intergenic ORFs with a strong translation signal. This enabled us to highlight sequence and structural factors determining de novo gene emergence. Finally, we showed a strong correlation between the fold potential of de novo proteins and one of their ancestral amino acid sequences, reflecting the relationship between the noncoding genome and the protein structure universe.

5.
Blood ; 139(16): 2427-2440, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35007328

RESUMEN

Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.


Asunto(s)
Disqueratosis Congénita , Discapacidad Intelectual , Microcefalia , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Retardo del Crecimiento Fetal , Humanos , Discapacidad Intelectual/genética , Microcefalia/genética , Microcefalia/metabolismo , Mutación , Telómero/genética , Telómero/metabolismo
6.
Proteins ; 91(4): 466-484, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36306150

RESUMEN

Order and disorder govern protein functions, but there is a great diversity in disorder, from regions that are-and stay-fully disordered to conditional order. This diversity is still difficult to decipher even though it is encoded in the amino acid sequences. Here, we developed an analytic Python package, named pyHCA, to estimate the foldability of a protein segment from the only information of its amino acid sequence and based on a measure of its density in regular secondary structures associated with hydrophobic clusters, as defined by the hydrophobic cluster analysis (HCA) approach. The tool was designed by optimizing the separation between foldable segments from databases of disorder (DisProt) and order (SCOPe [soluble domains] and OPM [transmembrane domains]). It allows to specify the ratio between order, embodied by regular secondary structures (either participating in the hydrophobic core of well-folded 3D structures or conditionally formed in intrinsically disordered regions) and disorder. We illustrated the relevance of pyHCA with several examples and applied it to the sequences of the proteomes of 21 species ranging from prokaryotes and archaea to unicellular and multicellular eukaryotes, for which structure models are provided in the AlphaFold protein structure database. Cases of low-confidence scores related to disorder were distinguished from those of sequences that we identified as foldable but are still excluded from accurate modeling by AlphaFold2 due to a lack of sequence homologs or to compositional biases. Overall, our approach is complementary to AlphaFold2, providing guides to map structural innovations through evolutionary processes, at proteome and gene scales.


Asunto(s)
Proteoma , Secuencia de Aminoácidos , Proteoma/metabolismo , Estructura Secundaria de Proteína , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos
7.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674751

RESUMEN

ABCB4 (ATP-binding cassette subfamily B member 4) is a hepatocanalicular floppase involved in biliary phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene give rise to several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), an autosomal recessive disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ten ABCB4 missense variations in NBD1:NBD2 homologous positions (Y403H/Y1043H, K435M/K1075M, E558K/E1200A, D564G/D1206G and H589Y/H1231Y) all localized at the conserved and functionally critical motifs of ABC transporters, six of which are mutated in patients. By combining structure analysis and in vitro studies, we found that all ten mutants were normally processed and localized at the canalicular membrane of HepG2 cells, but showed dramatically impaired PC transport activity that was significantly rescued by treatment with the clinically approved CFTR potentiator ivacaftor. Our results provide evidence that functional ABCB4 mutations are rescued by ivacaftor, paving the way for the repositioning of this potentiator for the treatment of selected patients with PFIC3 caused by mutations in the ATP-binding sites of ABCB4.


Asunto(s)
Colestasis Intrahepática , Mutación Missense , Humanos , Reposicionamiento de Medicamentos , Colestasis Intrahepática/tratamiento farmacológico , Colestasis Intrahepática/genética , Fosfatidilcolinas , Adenosina Trifosfato
8.
Hum Mol Genet ; 29(6): 907-922, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31985013

RESUMEN

Telomeres are nucleoprotein structures at the end of chromosomes. The telomerase complex, constituted of the catalytic subunit TERT, the RNA matrix hTR and several cofactors, including the H/ACA box ribonucleoproteins Dyskerin, NOP10, GAR1, NAF1 and NHP2, regulates telomere length. In humans, inherited defects in telomere length maintenance are responsible for a wide spectrum of clinical premature aging manifestations including pulmonary fibrosis (PF), dyskeratosis congenita (DC), bone marrow failure and predisposition to cancer. NHP2 mutations have been so far reported only in two patients with DC. Here, we report the first case of Høyeraal-Hreidarsson syndrome, the severe form of DC, caused by biallelic missense mutations in NHP2. Additionally, we identified three unrelated patients with PF carrying NHP2 heterozygous mutations. Strikingly, one of these patients acquired a somatic mutation in the promoter of TERT that likely conferred a selective advantage in a subset of blood cells. Finally, we demonstrate that a functional deficit of human NHP2 affects ribosomal RNA biogenesis. Together, our results broaden the functional consequences and clinical spectrum of NHP2 deficiency.


Asunto(s)
Disqueratosis Congénita/patología , Retardo del Crecimiento Fetal/patología , Discapacidad Intelectual/patología , Microcefalia/patología , Mutación , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fibrosis Pulmonar/patología , ARN Ribosómico/biosíntesis , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Ribonucleoproteínas Nucleares Pequeñas/genética , Anciano , Secuencia de Aminoácidos , Disqueratosis Congénita/etiología , Femenino , Retardo del Crecimiento Fetal/etiología , Humanos , Recién Nacido , Discapacidad Intelectual/etiología , Masculino , Microcefalia/etiología , Persona de Mediana Edad , Proteínas Nucleares/química , Linaje , Regiones Promotoras Genéticas , Fibrosis Pulmonar/etiología , Ribonucleoproteínas Nucleares Pequeñas/química , Homología de Secuencia , Telomerasa/genética , Transcripción Genética
9.
Cell Mol Life Sci ; 78(23): 7813-7829, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714360

RESUMEN

Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Fibrosis Quística/tratamiento farmacológico , Mutación , Pliegue de Proteína/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Pirrolidinas/farmacología , Sitios de Unión , Agonistas de los Canales de Cloruro/farmacología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Quimioterapia Combinada , Células HEK293 , Humanos , Dominios Proteicos , Estructura Terciaria de Proteína
10.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555865

RESUMEN

ABC transporters are large membrane proteins sharing a complex architecture, which comprises two nucleotide-binding domains (NBDs) and two membrane-spanning domains (MSDs). These domains are susceptible to mutations affecting their folding and assembly. In the CFTR (ABCC7) protein, a groove has been highlighted in the MSD1 at the level of the membrane inner leaflet, containing both multiple mutations affecting folding and a binding site for pharmaco-chaperones that stabilize this region. This groove is also present in ABCB proteins, however it is covered by a short elbow helix, while in ABCC proteins it remains unprotected, due to a lower position of the elbow helix in the presence of the ABCC-specific lasso motif. Here, we identified a MSD1 second-site mutation located in the vicinity of the CFTR MSD1 groove that partially rescued the folding defect of cystic fibrosis causing mutations located within MSD1, while having no effect on the most frequent mutation, F508del, located within NBD1. A model of the mutated protein 3D structure suggests additional interaction between MSD1 and MSD2, strengthening the assembly at the level of the MSD intracellular loops. Altogether, these results provide insightful information in understanding key features of the folding and function of the CFTR protein in particular, and more generally, of type IV ABC transporters.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Estructura Terciaria de Proteína , Fibrosis Quística/genética , Mutación , Membranas/metabolismo
11.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142670

RESUMEN

ABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin-Darby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Transportadoras de Casetes de Unión a ATP/metabolismo , Aminofenoles , Animales , Colestasis Intrahepática , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Perros , Proteínas Fluorescentes Verdes/metabolismo , Quinolonas , Ácido Taurocólico/farmacología
12.
Transfusion ; 61(8): 2468-2476, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34110623

RESUMEN

BACKGROUND: Although D variant phenotype is known to be due to genetic defects, including rare missense single nucleotide variants (SNVs), within the RHD gene, few studies have addressed the molecular and cellular mechanisms driving this altered expression. We and others showed previously that splicing is commonly disrupted by SNVs in constitutive splice sites and their vicinity. We thus sought to investigate whether rare missense SNVs located in "deep" exonic regions could also impair this mechanism. STUDY DESIGN AND METHODS: Forty-six missense SNVs reported within exons 6 and 7 were first selected from the Human RhesusBase. Their respective effect on splicing was assessed by using an in vitro assay. An RhD-negative cell model was further generated by using the CRISPR-Cas9 approach. RhD-mutated proteins were overexpressed in the newly created model, and cell membrane expression of the D antigen was measured by flow cytometry. RESULTS: Minigene splicing assay showed that 14 of 46 (30.4%) missense SNVs alter splicing. Very interestingly, further investigation of two missense SNVs, which both affect codon 338 and confer a weak D phenotype, showed various mechanisms: c.1012C>G (p.Leu338Val) disrupts splicing only, while c.1013T>C (p.Leu338Pro) alters only the protein structure, in agreement with in silico prediction tools and 3D protein structure visualization. CONCLUSION: Our functional data set suggests that missense SNVs damage quantitatively D antigen expression by, at least, two different mechanisms (splicing alteration and protein destabilization) that may act independently. These data thereby contribute to extend the current knowledge of the molecular mechanisms governing weakened D expression.


Asunto(s)
Mutación Missense , Polimorfismo de Nucleótido Simple , Sistema del Grupo Sanguíneo Rh-Hr/genética , Expresión Génica , Humanos , Células K562 , Modelos Moleculares , Empalme del ARN , Sistema del Grupo Sanguíneo Rh-Hr/química
13.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638622

RESUMEN

ABCA3 is a crucial protein of pulmonary surfactant biosynthesis, associated with recessive pulmonary disorders such as neonatal respiratory distress and interstitial lung disease. Mutations are mostly private, and accurate interpretation of variants is mandatory for genetic counseling and patient care. We used 3D structure information to complete the set of available bioinformatics tools dedicated to medical decision. Using the experimental structure of human ABCA4, we modeled at atomic resolution the human ABCA3 3D structure including transmembrane domains (TMDs), nucleotide-binding domains (NBDs), and regulatory domains (RDs) in an ATP-bound conformation. We focused and mapped known pathogenic missense variants on this model. We pinpointed amino-acids within the NBDs, the RDs and within the interfaces between the NBDs and TMDs intracellular helices (IHs), which are predicted to play key roles in the structure and/or the function of the ABCA3 transporter. This theoretical study also highlighted the possible impact of ABCA3 variants in the cytosolic part of the protein, such as the well-known p.Glu292Val and p.Arg288Lys variants.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Variación Genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biología Computacional , Humanos , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/metabolismo , Modelos Moleculares , Mutación , Mutación Missense , Conformación Proteica , Dominios Proteicos , Surfactantes Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo , Homología de Secuencia de Aminoácido
14.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203920

RESUMEN

The negatively charged Asp325 residue has proved to be essential for iron export by human (HsFPN1) and primate Philippine tarsier (TsFpn) ferroportin, but its exact role during the iron transport cycle is still to be elucidated. It has been posited as being functionally equivalent to the metal ion-coordinating residue His261 in the C-lobe of the bacterial homolog BbFpn, but the two residues arise in different sequence motifs of the discontinuous TM7 transmembrane helix. Furthermore, BbFpn is not subject to extracellular regulation, contrary to its mammalian orthologues which are downregulated by hepcidin. To get further insight into the molecular mechanisms related to iron export in mammals in which Asp325 is involved, we investigated the behavior of the Asp325Ala, Asp325His, and Asp325Asn mutants in transiently transfected HEK293T cells, and performed a comparative structural analysis. Our biochemical studies clearly distinguished between the Asp325Ala and Asp325His mutants, which result in a dramatic decrease in plasma membrane expression of FPN1, and the Asp325Asn mutant, which alters iron egress without affecting protein localization. Analysis of the 3D structures of HsFPN1 and TsFpn in the outward-facing (OF) state indicated that Asp325 does not interact directly with metal ions but is involved in the modulation of Cys326 metal-binding capacity. Moreover, models of the architecture of mammalian proteins in the inward-facing (IF) state suggested that Asp325 may form an inter-lobe salt-bridge with Arg40 (TM1) when not interacting with Cys326. These findings allow to suggest that Asp325 may be important for fine-tuning iron recognition in the C-lobe, as well as for local structural changes during the IF-to-OF transition at the extracellular gate level. Inability to form a salt-bridge between TM1 and TM7b during iron translocation could lead to protein instability, as shown by the Asp325Ala and Asp325His mutants.


Asunto(s)
Ácido Aspártico/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Sitios de Unión , Transporte Biológico , Membrana Celular/metabolismo , Células HEK293 , Humanos , Hierro/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad
15.
Blood ; 132(12): 1318-1331, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-29914977

RESUMEN

Congenital neutropenias (CNs) are rare heterogeneous genetic disorders, with about 25% of patients without known genetic defects. Using whole-exome sequencing, we identified a heterozygous mutation in the SRP54 gene, encoding the signal recognition particle (SRP) 54 GTPase protein, in 3 sporadic cases and 1 autosomal dominant family. We subsequently sequenced the SRP54 gene in 66 probands from the French CN registry. In total, we identified 23 mutated cases (16 sporadic, 7 familial) with 7 distinct germ line SRP54 mutations including a recurrent in-frame deletion (Thr117del) in 14 cases. In nearly all patients, neutropenia was chronic and profound with promyelocytic maturation arrest, occurring within the first months of life, and required long-term granulocyte colony-stimulating factor therapy with a poor response. Neutropenia was sometimes associated with a severe neurodevelopmental delay (n = 5) and/or an exocrine pancreatic insufficiency requiring enzyme supplementation (n = 3). The SRP54 protein is a key component of the ribonucleoprotein complex that mediates the co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER). We showed that SRP54 was specifically upregulated during the in vitro granulocytic differentiation, and that SRP54 mutations or knockdown led to a drastically reduced proliferation of granulocytic cells associated with an enhanced P53-dependent apoptosis. Bone marrow examination of SRP54-mutated patients revealed a major dysgranulopoiesis and features of cellular ER stress and autophagy that were confirmed using SRP54-mutated primary cells and SRP54 knockdown cells. In conclusion, we characterized a pathological pathway, which represents the second most common cause of CN with maturation arrest in the French CN registry.


Asunto(s)
Enfermedades de la Médula Ósea/genética , Estrés del Retículo Endoplásmico , Insuficiencia Pancreática Exocrina/genética , Lipomatosis/genética , Mutación , Neutropenia/congénito , Partícula de Reconocimiento de Señal/genética , Adolescente , Adulto , Apoptosis , Autofagia , Enfermedades de la Médula Ósea/metabolismo , Enfermedades de la Médula Ósea/patología , Niño , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Insuficiencia Pancreática Exocrina/metabolismo , Insuficiencia Pancreática Exocrina/patología , Femenino , Humanos , Lactante , Recién Nacido , Lipomatosis/metabolismo , Lipomatosis/patología , Masculino , Persona de Mediana Edad , Neutropenia/genética , Neutropenia/metabolismo , Neutropenia/patología , Síndrome de Shwachman-Diamond , Regulación hacia Arriba , Adulto Joven
16.
FASEB J ; 33(12): 14625-14635, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31690120

RESUMEN

Ferroportin 1 (FPN1) is a major facilitator superfamily transporter that is essential for proper maintenance of human iron homeostasis at the systemic and cellular level. FPN1 dysfunction leads to the progressive accumulation of iron in reticuloendothelial cells, causing hemochromatosis type 4A (or ferroportin disease), an autosomal dominant disorder that displays large phenotypic heterogeneity. Although crystal structures have unveiled the outward- and inward-facing conformations of the bacterial homolog Bdellovibrio bacteriovorus Fpn (or Bd2019) and calcium has recently been identified as an essential cofactor, our molecular understanding of the iron transport mechanism remains incomplete. Here, we used a combination of molecular modeling, molecular dynamics simulations, and Ala site-directed mutagenesis, followed by complementary in vitro functional analyses, to explore the structural architecture of the human FPN1 intracellular gate. We reveal an interdomain network that involves 5 key amino acids and is likely very important for stability of the iron exporter facing the extracellular milieu. We also identify inter- and intradomain interactions that rely on the 2 Asp84 and Asn174 critical residues and do not exist in the bacterial homolog. These interactions are thought to play an important role in the modulation of conformational changes during the transport cycle. We interpret these results in the context of hemochromatosis type 4A, reinforcing the idea that different categories of loss-of-function mutations exist. Our findings provide an unprecedented view of the human FPN1 outward-facing structure and the particular function of the so-called "gating residues" in the mechanism of iron export.-Guellec, J., Elbahnsi, A., Le Tertre, M., Uguen, K., Gourlaouen, I., Férec, C., Ka, C., Callebaut, I., Le Gac, G. Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A.


Asunto(s)
Proteínas de Transporte de Catión/deficiencia , Hemocromatosis/genética , Simulación de Dinámica Molecular , Mutación , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Células HEK293 , Humanos , Hierro/metabolismo , Dominios Proteicos
17.
Liver Int ; 40(8): 1917-1925, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32433800

RESUMEN

BACKGROUND & AIM: The canalicular bile salt export pump (BSEP/ABCB11) of hepatocytes is the main adenosine triphosphate (ATP)-binding cassette (ABC) transporter responsible for bile acid secretion. Mutations in ABCB11 cause several cholestatic diseases, including progressive familial intrahepatic cholestasis type 2 (PFIC2) often lethal in absence of liver transplantation. We investigated in vitro the effect and potential rescue of a BSEP mutation by ivacaftor, a clinically approved cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7) potentiator. METHODS: The p.T463I mutation, identified in a PFIC2 patient and located in a highly conserved ABC transporter motif, was studied by 3D structure modelling. The mutation was reproduced in a plasmid encoding a rat Bsep-green fluorescent protein. After transfection, mutant expression was studied in Can 10 cells. Taurocholate transport activity and ivacaftor effect were studied in Madin-Darby canine kidney (MDCK) clones co-expressing the rat sodium-taurocholate co-transporting polypeptide (Ntcp/Slc10A1). RESULTS: As the wild-type protein, BsepT463I was normally targeted to the canalicular membrane of Can 10 cells. As predicted by 3D structure modelling, taurocholate transport activity was dramatically low in MDCK clones expressing BsepT463I . Ivacaftor treatment increased by 1.7-fold taurocholate transport activity of BsepT463I (P < .0001), reaching 95% of Bsepwt activity. These data suggest that the p.T463I mutation impairs ATP-binding, resulting in Bsep dysfunction that can be rescued by ivacaftor. CONCLUSION: These results provide experimental evidence of ivacaftor therapeutic potential for selected patients with PFIC2 caused by ABCB11 missense mutations affecting BSEP function. This could represent a significant step forward for the care of patients with BSEP deficiency.


Asunto(s)
Colestasis Intrahepática , Quinolonas , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Aminofenoles , Animales , Ácidos y Sales Biliares , Colestasis Intrahepática/tratamiento farmacológico , Colestasis Intrahepática/genética , Perros , Humanos , Ratas
18.
Mol Genet Metab ; 128(3): 342-351, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30660387

RESUMEN

Non-syndromic microcytic congenital sideroblastic anemia (cSA) is predominantly caused by defective genes encoding for either ALAS2, the first enzyme of heme biosynthesis pathway or SLC25A38, the mitochondrial importer of glycine, an ALAS2 substrate. Herein we explored a new case of cSA with two mutations in GLRX5, a gene for which only two patients have been reported so far. The patient was a young female with biallelic compound heterozygous mutations in GLRX5 (p.Cys67Tyr and p.Met128Lys). Three-D structure analysis confirmed the involvement of Cys67 in the coordination of the [2Fe2S] cluster and suggested a potential role of Met128 in partner interactions. The protein-level of ferrochelatase, the terminal-enzyme of heme process, was increased both in patient-derived lymphoblastoid and CD34+ cells, however, its activity was drastically decreased. The activity of ALAS2 was found altered and possibly related to a defect in the biogenesis of its co-substrate, the succinyl-CoA. Thus, the patient exhibits both a very low ferrochelatase activity without any accumulation of porphyrins precursors in contrast to what is reported in erythropoietic protoporphyria with solely impaired ferrochelatase activity. A significant oxidative stress was evidenced by decreased reduced glutathione and aconitase activity, and increased MnSOD protein expression. This oxidative stress depleted and damaged mtDNA, decreased complex I and IV activities and depleted ATP content. Collectively, our study demonstrates the key role of GLRX5 in modulating ALAS2 and ferrochelatase activities and in maintaining mitochondrial function.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Anemia Sideroblástica/genética , Ferroquelatasa/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Glutarredoxinas/genética , Hemo/biosíntesis , Mutación Missense , 5-Aminolevulinato Sintetasa/metabolismo , Aconitato Hidratasa/metabolismo , Adolescente , Secuencia de Aminoácidos , Anemia Sideroblástica/enzimología , Línea Celular Transformada , Femenino , Ferroquelatasa/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Glutatión/metabolismo , Humanos , Mitocondrias/enzimología , Estrés Oxidativo , Linaje , Estructura Terciaria de Proteína
19.
Transfusion ; 59(4): 1367-1375, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30811032

RESUMEN

BACKGROUND: We previously showed that several variations in the RHD gene, including synonymous changes, can be classified as splice site variants and may play a direct role in D variant phenotype expression. We sought to extend our study to additional candidates, notably in the first and last exons of the gene, by engineering a novel universal splice reporting vector, i.e., minigene. STUDY DESIGN AND METHODS: Our previous plasmid construct was modified to allow subcloning of any exon(s) of interest for assessing effect of variations on splicing. Seventeen novel and/or uncharacterized variations of the RHD gene were selected for the study and tested in our novel model. RESULTS: We engineered and validated a novel universal minigene for assessing virtually any variations of interest for splicing defect. Of the 17 variants tested in the novel model, 11 were shown to alter splicing either totally or partially, including the silent c.1065C>T variation, which induces major skipping of exon 7, and may therefore be responsible for reducing D antigen expression. We also showed that while all three missense variations c.1154G>C, c.1154G>T, and c.1154G>A in exon 9 are splice site variants, splicing is differentially altered and D-negative phenotype observed in the presence of the latter substitution is likely due to a defect in RhD protein folding. CONCLUSION: Overall, we hypothesize that splicing alteration is likely to be a common mechanism of D phenotype variation that has been underestimated so far. Further large-scale studies are necessary to demonstrate this statement definitely.


Asunto(s)
Exones , Modelos Biológicos , Mutación Missense , Sitios de Empalme de ARN , Empalme del ARN , Sistema del Grupo Sanguíneo Rh-Hr , Mutación Silenciosa , Línea Celular , Humanos , Sistema del Grupo Sanguíneo Rh-Hr/biosíntesis , Sistema del Grupo Sanguíneo Rh-Hr/genética
20.
Cell Mol Life Sci ; 75(20): 3829-3855, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29779042

RESUMEN

Cryo-electron microscopy (cryo-EM) has recently provided invaluable experimental data about the full-length cystic fibrosis transmembrane conductance regulator (CFTR) 3D structure. However, this experimental information deals with inactive states of the channel, either in an apo, quiescent conformation, in which nucleotide-binding domains (NBDs) are widely separated or in an ATP-bound, yet closed conformation. Here, we show that 3D structure models of the open and closed forms of the channel, now further supported by metadynamics simulations and by comparison with the cryo-EM data, could be used to gain some insights into critical features of the conformational transition toward active CFTR forms. These critical elements lie within membrane-spanning domains but also within NBD1 and the N-terminal extension, in which conformational plasticity is predicted to occur to help the interaction with filamin, one of the CFTR cellular partners.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Dominios Proteicos , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA