RESUMEN
In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.
Asunto(s)
Biotecnología , Agricultura , Bélgica , Bebidas , Productos Biológicos , Alimentos , IndustriasRESUMEN
The reactive oxygen species, hydrogen peroxide (H2O2) and superoxide anion (O2o-), were generated with a xanthine-xanthine oxidase system and their effect on human sperm function was studied. The action of reactive oxygen species on selected human spermatozoa resulted in a decreased capacity for ionophore-induced acrosome reaction, a decrease in sperm motility, an increase in the concentration of lipid hydroperoxides and a loss of membrane polyunsaturated fatty acids. H2O2 was the key intermediate of the deleterious effects exerted by the xanthine and xanthine oxidase. Among these parameters, the acrosome reaction appeared most susceptible to the reactive oxygen species generated by the xanthine-xanthine oxidase system, and was decreased without sperm motility being affected. Treatment with H2O2 was shown to inactivate several enzymatic activities involved in the antioxidant defence of spermatozoa: glutathione peroxidase, superoxide dismutase and glucose-6-phosphate dehydrogenase. H2O2 and O2o- were shown to be involved in the lipid alterations triggered by the xanthine-xanthine oxidase system. Singlet oxygen is proposed to intervene in the lipoperoxidation process. The inefficacy of mannitol in protecting spermatozoa suggests that hydroxyl radicals were not produced in the extracellular medium.