Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 52: 567-590, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30212237

RESUMEN

Synapse formation is mediated by a surprisingly large number and wide variety of genes encoding many different protein classes. One of the families increasingly implicated in synapse wiring is the immunoglobulin superfamily (IgSF). IgSF molecules are by definition any protein containing at least one Ig-like domain, making this family one of the most common protein classes encoded by the genome. Here, we review the emerging roles for IgSF molecules in synapse formation specifically in the vertebrate brain, focusing on examples from three classes of IgSF members: ( a) cell adhesion molecules, ( b) signaling molecules, and ( c) immune molecules expressed in the brain. The critical roles for IgSF members in regulating synapse formation may explain their extensive involvement in neuropsychiatric and neurodevelopmental disorders. Solving the IgSF code for synapse formation may reveal multiple new targets for rescuing IgSF-mediated deficits in synapse formation and, eventually, new treatments for psychiatric disorders caused by altered IgSF-induced synapse wiring.


Asunto(s)
Encéfalo/metabolismo , Inmunoglobulinas/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Sinapsis/genética , Animales , Encéfalo/crecimiento & desarrollo , Moléculas de Adhesión Celular/genética , Humanos , Inmunoglobulinas/clasificación , Inmunoglobulinas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/inmunología
2.
Blood ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900973

RESUMEN

A common feature in patients with abdominal aortic aneurysms (AAA) is the formation of a nonocclusive intraluminal thrombus (ILT) in regions of aortic dilation. Platelets are known to maintain hemostasis and propagate thrombosis through several redundant activation mechanisms, yet the role of platelet activation in the pathogenesis of AAA associated ILT is still poorly understood. Thus, we sought to investigate how platelet activation impacts the pathogenesis of AAA. Using RNA-sequencing, we identify that the platelet-associated transcripts are significantly enriched in the ILT compared to the adjacent aneurysm wall and healthy control aortas. We found that the platelet specific receptor glycoprotein VI (GPVI) is among the top enriched genes in AAA ILT and is increased on the platelet surface of AAA patients. Examination of a specific indicator of platelet activity, soluble GPVI (sGPVI), in two independent AAA patient cohorts is highly predictive of a AAA diagnosis and associates more strongly with aneurysm growth rate when compared to D-dimer in humans. Finally, intervention with the anti-GPVI antibody (JAQ1) in mice with established aneurysms blunted the progression of AAA in two independent mouse models. In conclusion, we show that levels of sGPVI in humans can predict a diagnosis of AAA and AAA growth rate, which may be critical in the identification of high-risk patients. We also identify GPVI as a novel platelet-specific AAA therapeutic target, with minimal risk of adverse bleeding complications, where none currently exist.

3.
Immunity ; 47(4): 664-679.e6, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29030115

RESUMEN

Store-operated Ca2+ entry (SOCE) is the main Ca2+ influx pathway in lymphocytes and is essential for T cell function and adaptive immunity. SOCE is mediated by Ca2+ release-activated Ca2+ (CRAC) channels that are activated by stromal interaction molecule (STIM) 1 and STIM2. SOCE regulates many Ca2+-dependent signaling molecules, including calcineurin, and inhibition of SOCE or calcineurin impairs antigen-dependent T cell proliferation. We here report that SOCE and calcineurin regulate cell cycle entry of quiescent T cells by controlling glycolysis and oxidative phosphorylation. SOCE directs the metabolic reprogramming of naive T cells by regulating the expression of glucose transporters, glycolytic enzymes, and metabolic regulators through the activation of nuclear factor of activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient-sensing pathway. We propose that SOCE controls a critical "metabolic checkpoint" at which T cells assess adequate nutrient supply to support clonal expansion and adaptive immune responses.


Asunto(s)
Canales de Calcio/inmunología , Señalización del Calcio/inmunología , Calcio/inmunología , Linfocitos T/inmunología , Animales , Calcineurina/inmunología , Calcineurina/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , División Celular/inmunología , Células Cultivadas , Femenino , Glucólisis/inmunología , Células HEK293 , Humanos , Immunoblotting , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/inmunología , Factores de Transcripción NFATC/metabolismo , Fosfatidilinositol 3-Quinasas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/inmunología , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/inmunología , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 2/genética , Molécula de Interacción Estromal 2/inmunología , Molécula de Interacción Estromal 2/metabolismo , Linfocitos T/metabolismo
4.
Circ Res ; 132(6): 775-790, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36927182

RESUMEN

Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.


Asunto(s)
Plaquetas , Trombosis , Humanos , Plaquetas/metabolismo , Micropartículas Derivadas de Células , Células Endoteliales/patología , Hemostasis , Activación Plaquetaria
5.
Circ Res ; 132(10): 1358-1373, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167358

RESUMEN

COVID-19 has become the first modern-day pandemic of historic proportion, affecting >600 million individuals worldwide and causing >6.5 million deaths. While acute infection has had devastating consequences, postacute sequelae of SARS-CoV-2 infection appears to be a pandemic of its own, impacting up to one-third of survivors and often causing symptoms suggestive of cardiovascular phenomena. This review will highlight the suspected pathophysiology of postacute sequelae of SARS-CoV-2, its influence on the cardiovascular system, and potential treatment strategies.


Asunto(s)
COVID-19 , Sistema Cardiovascular , Humanos , SARS-CoV-2 , Pandemias , Pulmón , Progresión de la Enfermedad
6.
J Allergy Clin Immunol ; 153(6): 1621-1633, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597862

RESUMEN

BACKGROUND: Despite the promise of oral immunotherapy (OIT) to treat food allergies, this procedure is associated with potential risk. There is no current agreement about what elements should be included in the preparatory or consent process. OBJECTIVE: We developed consensus recommendations about the OIT process considerations and patient-specific factors that should be addressed before initiating OIT and developed a consensus OIT consent process and information form. METHODS: We convened a 36-member Preparing Patients for Oral Immunotherapy (PPOINT) panel of allergy experts to develop a consensus OIT patient preparation, informed consent process, and framework form. Consensus for themes and statements was reached using Delphi methodology, and the consent information form was developed. RESULTS: The expert panel reached consensus for 4 themes and 103 statements specific to OIT preparatory procedures, of which 76 statements reached consensus for inclusion specific to the following themes: general considerations for counseling patients about OIT; patient- and family-specific factors that should be addressed before initiating OIT and during OIT; indications for initiating OIT; and potential contraindications and precautions for OIT. The panel reached consensus on 9 OIT consent form themes: benefits, risks, outcomes, alternatives, risk mitigation, difficulties/challenges, discontinuation, office policies, and long-term management. From these themes, 219 statements were proposed, of which 189 reached consensus, and 71 were included on the consent information form. CONCLUSION: We developed consensus recommendations to prepare and counsel patients for safe and effective OIT in clinical practice with evidence-based risk mitigation. Adoption of these recommendations may help standardize clinical care and improve patient outcomes and quality of life.


Asunto(s)
Consenso , Técnica Delphi , Desensibilización Inmunológica , Hipersensibilidad a los Alimentos , Consentimiento Informado , Humanos , Desensibilización Inmunológica/métodos , Administración Oral , Hipersensibilidad a los Alimentos/terapia , Hipersensibilidad a los Alimentos/inmunología
7.
Circulation ; 147(14): 1079-1096, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011073

RESUMEN

BACKGROUND: Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention. METHODS: TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor-deficient (Ldlr-/-) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3-/-). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA. RESULTS: Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3-/- mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells-augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK. CONCLUSIONS: These results define a role for gut microbiota-generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress-related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.


Asunto(s)
Aneurisma de la Aorta Abdominal , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Porcinos , Ratones Endogámicos C57BL , Colina , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control
8.
Chemistry ; 30(27): e202400681, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38417144

RESUMEN

The bulky ß-diketiminate ligand frameworks [BDIDCHP]- and [BDIDipp/Ar]- (BDI=[HC{C(Me)2N-Dipp/Ar}2]- (Dipp=2,6-diisopropylphenyl (Dipp); Ar=2,6-dicyclohexylphyenyl (DCHP) or 2,4,6-tricyclohexylphyenyl (TCHP)) have been developed for the kinetic stabilisation of the first europium (II) hydride complexes, [(BDIDCHP)Eu(µ-H)]2, [(BDIDipp/DCHP)Eu(µ-H)]2 and [(BDIDipp/TCHP)Eu(µ-H)]2, respectively. These complexes represent the first step beyond the current lanthanide(II) hydrides that are all based on ytterbium. Tuning the steric profile of ß-diketiminate ligands from a symmetrical to unsymmetrical disposition, enhanced solubility and stability in the solution-state. This provides the first opportunity to study the structure and bonding of these novel Eu(II) hydride complexes crystallographically, spectroscopically and computationally, with their preliminary reactivity investigated.

9.
Vasc Med ; 29(1): 42-47, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334096

RESUMEN

BACKGROUND: Patients with lymphedema and lipedema share physical exam findings that may lead to misdiagnosis. Poor mobility is common in patients with obesity and patients with lymphedema and lipedema. This may constitute a risk factor for venous thromboembolism (VTE). Our objective was to evaluate the association of VTE in obese patients with lymphedema and lipedema. METHODS: The National Inpatient Sample (NIS) was searched from 2016 to 2020 to identify hospital admissions of obese female patients with lymphedema and lipedema. Patients were analyzed in the context of presence or absence of VTE while adjusting for complex cluster sampling techniques. Predictors of VTE were accessed by multivariable regression. RESULTS: Lymphedema was identified in 189,985 patients and lipedema in 50,645 patients. VTE was observed in 3.12% (n = 374,210) of patients with obesity. In patients with obesity, VTE was more common in patients with lymphedema than without (2.6% vs 1.6%; p < 0.01). Similarly, VTE was more common in patients with lipedema than without (0.6% vs 0.4%; p < 0.01). After multivariable logistic regression, VTE events in obese patients with lymphedema were higher versus without (OR 1.6; CI 1.08-2.43; p = 0.02). Similarly, VTE events were more common in obese patients with lipedema versus obese patients without lipedema (OR 1.20; CI 1.03-1.41; p = 0.02). CONCLUSIONS: In this hypothesis-generating study, lymphedema and lipedema show a positive association with VTE after adjusting for baseline patient characteristics such as obesity, which is a known independent risk factor for VTE. Mechanisms whereby lymphedema and lipedema are associated with VTE should be investigated.


Asunto(s)
Lipedema , Linfedema , Tromboembolia Venosa , Humanos , Femenino , Lipedema/diagnóstico , Lipedema/epidemiología , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/epidemiología , Pacientes Internos , Linfedema/diagnóstico , Linfedema/epidemiología , Factores de Riesgo , Obesidad/complicaciones , Obesidad/diagnóstico , Obesidad/epidemiología
10.
Vasc Med ; 29(2): 125-134, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334067

RESUMEN

BACKGROUND: Postacute sequelae of COVID-19 (PASC), also referred to as "Long COVID", sometimes follows COVID-19, a disease caused by SARS-CoV-2. Although SARS-CoV-2 is well known to promote a prothrombotic state, less is known about the thrombosis risk in PASC. Our objective was to evaluate platelet function and thrombotic potential in patients following recovery from SARS-CoV-2, but with clear symptoms of patients with PASC. METHODS: patients with PASC and matched healthy controls were enrolled in the study on average 15 months after documented SARS-CoV-2 infection. Platelet activation was evaluated by light transmission aggregometry (LTA) and flow cytometry in response to platelet surface receptor agonists. Thrombosis in platelet-deplete plasma was evaluated by Factor Xa activity. A microfluidics system assessed thrombosis in whole blood under shear stress conditions. RESULTS: A mild increase in platelet aggregation in patients with PASC through the thromboxane receptor was observed, and platelet activation through the glycoprotein VI (GPVI) receptor was decreased in patients with PASC compared to age- and sex-matched healthy controls. Thrombosis under shear conditions as well as Factor Xa activity were reduced in patients with PASC. Plasma from patients with PASC was an extremely potent activator of washed, healthy platelets - a phenomenon not observed when stimulating healthy platelets after incubation with plasma from healthy individuals. CONCLUSIONS: patients with PASC show dysregulated responses in platelets and coagulation in plasma, likely caused by a circulating molecule that promotes thrombosis. A hitherto undescribed protective response appears to exist in patients with PASC to counterbalance ongoing thrombosis that is common to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Trombosis , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Factor Xa , Coagulación Sanguínea , Progresión de la Enfermedad , Trombosis/etiología
11.
Pharmacol Rev ; 73(3): 924-967, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34088867

RESUMEN

The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1ß monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.


Asunto(s)
Aterosclerosis , Tratamiento Farmacológico de COVID-19 , COVID-19 , Fármacos Cardiovasculares , Enfermedades Cardiovasculares , Endotelio Vascular , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , COVID-19/metabolismo , COVID-19/fisiopatología , Fármacos Cardiovasculares/clasificación , Fármacos Cardiovasculares/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Descubrimiento de Drogas , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , SARS-CoV-2
12.
J Allergy Clin Immunol ; 152(2): 309-325, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295474

RESUMEN

This guidance updates 2021 GRADE (Grading of Recommendations Assessment, Development and Evaluation) recommendations regarding immediate allergic reactions following coronavirus disease 2019 (COVID-19) vaccines and addresses revaccinating individuals with first-dose allergic reactions and allergy testing to determine revaccination outcomes. Recent meta-analyses assessed the incidence of severe allergic reactions to initial COVID-19 vaccination, risk of mRNA-COVID-19 revaccination after an initial reaction, and diagnostic accuracy of COVID-19 vaccine and vaccine excipient testing in predicting reactions. GRADE methods informed rating the certainty of evidence and strength of recommendations. A modified Delphi panel consisting of experts in allergy, anaphylaxis, vaccinology, infectious diseases, emergency medicine, and primary care from Australia, Canada, Europe, Japan, South Africa, the United Kingdom, and the United States formed the recommendations. We recommend vaccination for persons without COVID-19 vaccine excipient allergy and revaccination after a prior immediate allergic reaction. We suggest against >15-minute postvaccination observation. We recommend against mRNA vaccine or excipient skin testing to predict outcomes. We suggest revaccination of persons with an immediate allergic reaction to the mRNA vaccine or excipients be performed by a person with vaccine allergy expertise in a properly equipped setting. We suggest against premedication, split-dosing, or special precautions because of a comorbid allergic history.


Asunto(s)
Anafilaxia , COVID-19 , Hipersensibilidad Inmediata , Humanos , Vacunas contra la COVID-19/efectos adversos , Enfoque GRADE , Consenso , Excipientes de Vacunas , COVID-19/prevención & control , Excipientes
13.
J Biol Chem ; 298(4): 101832, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35304099

RESUMEN

Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO-) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN-), yielding CNO- and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on "lipid-poor" apoA-I forms via the nonenzymatic CNO- pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.


Asunto(s)
Aorta , Apolipoproteína A-I , Aterosclerosis , Lisina , Carbamilación de Proteína , Aorta/metabolismo , Aorta/patología , Apolipoproteína A-I/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Humanos , Isocianatos , Lipoproteínas HDL/metabolismo , Lisina/metabolismo , Placa Aterosclerótica/patología , Proteómica , Urea
14.
Circ Res ; 128(8): 1214-1236, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33856918

RESUMEN

A pandemic of historic impact, coronavirus disease 2019 (COVID-19) has potential consequences on the cardiovascular health of millions of people who survive infection worldwide. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can infect the heart, vascular tissues, and circulating cells through ACE2 (angiotensin-converting enzyme 2), the host cell receptor for the viral spike protein. Acute cardiac injury is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. This update provides a review of the clinical manifestations of cardiovascular involvement, potential direct SARS-CoV-2 and indirect immune response mechanisms impacting the cardiovascular system, and implications for the management of patients after recovery from acute COVID-19 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Enfermedades Cardiovasculares/virología , Miocitos Cardíacos/virología , SARS-CoV-2/fisiología , Internalización del Virus , Biomarcadores/metabolismo , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/terapia , Cardiomiopatías/virología , Expresión Génica , Humanos , Sistema Inmunológico/fisiología , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Neuropilina-1/metabolismo , Activación Plaquetaria , ARN Mensajero/metabolismo , Sistema Renina-Angiotensina/fisiología , Volver al Deporte , Factores de Riesgo , SARS-CoV-2/ultraestructura , Glicoproteína de la Espiga del Coronavirus/metabolismo , Troponina/metabolismo , Remodelación Ventricular , Acoplamiento Viral , Internalización del Virus/efectos de los fármacos
16.
J Thromb Thrombolysis ; 55(3): 499-505, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36662443

RESUMEN

High-risk pulmonary embolism (PE) patients can be managed with systemic lysis, catheter-based therapies, or surgical embolectomy. Despite the advent of newer therapies, patients with high-risk PE remain with a 50-60% short-term mortality risk. In such patients, extracorporeal membrane oxygenation (ECMO) is increasingly utilized for hemodynamic support. To evaluate the outcomes of the use of ECMO in patients with high-risk PE. Using the National Inpatient Sample (NIS) database, we identified patients with high-risk PE using ICD 10 codes and compared in-hospital outcomes of patients with and without ECMO support. We identified 38,035 patients with high-risk PE, of whom 820 had undergone ECMO placement. Most patients who underwent ECMO were male (54%), white (65%), and with a mean age of 53.7 years. ECMO use was not associated with a meaningful difference in patient mortality when comparing treatment groups (OR, 1.32 ± 0.39; 0.74-2.35; p = 0.35). Rather, ECMO use was associated with a higher frequency of inpatient complications. ECMO use was not associated with a significant difference in patient mortality in patients with high-risk PE.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Embolia Pulmonar , Humanos , Masculino , Persona de Mediana Edad , Femenino , Oxigenación por Membrana Extracorpórea/efectos adversos , Embolectomía , Terapia Trombolítica , Bases de Datos Factuales , Estudios Retrospectivos
17.
J Thromb Thrombolysis ; 55(3): 426-431, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36653575

RESUMEN

Vaccination against COVID-19 reduces infection-related mortality. Unfortunately, reports of vaccine-induced immune thrombotic thrombocytopenia (VITT) in individuals administered adenovirus-vector-based vaccines (ChAdOx1 nCoV-19 and Ad26.COV2.S) have spurred side effect concerns. To address vaccine hesitancy related to this, it is essential to determine the incidence of VITT (defined by a 50% decrease in platelet count and positive anti-PF4 immunoassay within 4-28 days after vaccination) among patients administered two doses of an mRNA-based COVID-19 vaccination. We identified a retrospective cohort of 223,345 patients in the Cleveland Clinic Enterprise administered a COVID-19 vaccine at any location in Northeast Ohio and Florida from 12/4/2020 to 6/6/2021. 97.3% of these patients received an mRNA-based vaccination. Patients with: (1) a serial complete blood count both before and after vaccination and (2) a decrease in platelet count of ≥ 50% were selected for chart review. The primary outcome was the incidence of thrombotic events, including venous thromboembolism (VTE) and arterial thrombosis, 4-28 days post vaccination. Of 74 cohort patients with acute thrombosis, 72 (97.3%) demonstrated clear etiologies, such as active malignancy. Of two patients with unprovoked thrombosis, only one had findings concerning for VITT, with a strongly positive anti-PF4 antibody assay. In this large, multi-state, retrospective cohort, of 223,345 patients (97.2% of whom received the mRNA-based mRNA-1273 or BNT162b2 vaccines), we detected a single case that was concerning for VITT in a patient who received an mRNA vaccine. The overwhelming majority of patients with a thrombotic event 4-28 days following vaccination demonstrated clear etiologies.


Asunto(s)
COVID-19 , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Humanos , Vacunas contra la COVID-19/efectos adversos , Ad26COVS1 , Vacuna BNT162 , ChAdOx1 nCoV-19 , Estudios Retrospectivos , COVID-19/prevención & control , Vacunación/efectos adversos , Trombocitopenia/inducido químicamente
18.
Arterioscler Thromb Vasc Biol ; 41(1): 390-400, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176447

RESUMEN

OBJECTIVE: The platelet phenotype in certain patients and clinical contexts may differ from healthy conditions. We evaluated platelet activation through specific receptors in healthy men and women, comparing this to patients presenting with ST-segment-elevation myocardial infarction and non-ST-segment-elevation myocardial infarction. Approach and Results: We identified independent predictors of platelet activation through certain receptors and a murine MI model further explored these findings. Platelets from healthy women and female mice are more reactive through PARs (protease-activated receptors) compared with platelets from men and male mice. Multivariate regression analyses revealed male sex and non-ST-segment-elevation myocardial infarction as independent predictors of enhanced PAR1 activation in human platelets. Platelet PAR1 signaling decreased in women and increased in men during MI which was the opposite of what was observed during healthy conditions. Similarly, in mice, thrombin-mediated platelet activation was greater in healthy females compared with males, and lesser in females compared with males at the time of MI. CONCLUSIONS: Sex-specific signaling in platelets seems to be a cross-species phenomenon. The divergent platelet phenotype in males and females at the time of MI suggests a sex-specific antiplatelet drug regimen should be prospectively evaluated.


Asunto(s)
Plaquetas/metabolismo , Infarto del Miocardio sin Elevación del ST/sangre , Activación Plaquetaria , Receptor PAR-1/sangre , Infarto del Miocardio con Elevación del ST/sangre , Anciano , Animales , Plaquetas/efectos de los fármacos , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fenotipo , Activación Plaquetaria/efectos de los fármacos , Factores Sexuales , Transducción de Señal , Trombina/farmacología
19.
Org Biomol Chem ; 20(17): 3511-3527, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35230376

RESUMEN

In the quest for new modulators of the Farnesoid-X (FXR) and Takeda G-protein-coupled (TGR5) receptors, bile acids are a popular candidate for drug development. Recently, bile acids endowed with a C16-hydroxy group emerged as ligands of FXR and TGR5 with remarkable agonistic efficacies. Inspired by these findings, we synthesised a series of C16-hydroxylated 12ß-methyl-18-nor-bile acid analogues from a Δ13(17)-12ß-methyl-18-nor-chenodeoxycholic acid intermediate (16), the synthesis of which we reported previously. The preparation of these aptly named 12ß-methyl-18-nor-avicholic acids (17, 18, 41 and 42) was accomplished via allylic oxidation at C16, hydrogenation of the C13→C17 double bond and selective reduction of the C16-carbonyl group. Described also are various side products which were isolated during the evaluation of methods to affect the initial allylic oxidation. In addition, C23-methyl modified 12ß-methyl-18-nor-bile acids with (48, 49, 51 and 52) and without a C16-hydroxy group (45, 46 and 55), were synthesized to enable comparison of biological activities between these compounds and their un-methylated counterparts. As a result of our investigations we identified (23R)-12ß,23-dimethyl-18-nor-chenodeoxycholic acid (46) and 12ß-methyl-17-epi-18-nor-chenodeoxycholic acid 53 as TGR5 ligands with EC50 values of 25 µM.


Asunto(s)
Ácidos y Sales Biliares , Ácido Quenodesoxicólico , Ácidos y Sales Biliares/farmacología , Ácido Quenodesoxicólico/análogos & derivados , Hidrogenación , Ligandos
20.
J Thromb Thrombolysis ; 53(3): 616-625, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34586572

RESUMEN

The decision by pulmonary embolism response teams (PERTs) to utilize anticoagulation (AC) with or without systemic thrombolysis (ST) or catheter-directed therapies (CDT) for pulmonary embolism (PE) is a balance between the desire for a positive outcome and safety. Our primary aim was to develop a predictive model of in-hospital mortality for patients with high- or intermediate-risk PE managed by PERT while externally validating this model. Our secondary aim was to compare the relative safety and efficacy of ST and CDT in this cohort. Consecutive patients hospitalized between June 2014 and January 2020 at the Cleveland Clinic Foundation and The University of Rochester with acute high- or intermediate-risk PE managed by PERT were retrospectively evaluated. Groups were stratified by treatment strategy. The primary outcome was in-hospital mortality, and secondary outcome was major bleeding. A logistic regression model to predict the primary outcome was built using the derivation cohort, with 100-fold bootstrapping for internal validation. External validation was performed and the area under the receiver operating curve (AUC) was calculated. Of 549 included patients, 421 received AC alone, 71 received ST, and 64 received CDT. Predictors of major bleeding include ESC risk category, PESI score, hypoxia, hemodynamic instability, and serum lactate. CDT trended towards lower mortality but with an increased risk of bleeding relative to ST (OR = 0.42; 95% CI [0.15, 1.17] and OR = 2.14; 95% CI [0.9, 5.06] respectively). In the multivariable logistic regression model in the derivation institution cohort, predictors of in-hospital mortality were age, cancer, hemodynamic instability requiring vasopressors, and elevated NT-proBNP (AUC = 0.86). This model was validated using the validation institution cohort (AUC = 0.88). We report an externally-validated model for predicting in-hospital mortality in patients with PE managed by PERT. The decision by PERT to initiate CDT or ST for these patients had no impact on mortality or major bleeding, yet the long-term efficacy of these interventions needs to be elucidated.


Asunto(s)
Embolia Pulmonar , Terapia Trombolítica , Catéteres/efectos adversos , Fibrinolíticos/uso terapéutico , Hemorragia/inducido químicamente , Humanos , Pronóstico , Embolia Pulmonar/tratamiento farmacológico , Embolia Pulmonar/terapia , Estudios Retrospectivos , Terapia Trombolítica/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA