RESUMEN
Nanotube and nanowire transistors hold great promises for future electronic and optoelectronic devices owing to their downscaling possibilities. In this work, a single multi-walled tungsten disulfide (WS2) nanotube is utilized as the channel of a back-gated field-effect transistor. The device exhibits a p-type behavior in ambient conditions, with a hole mobility µp ≈ â 1.4â cm2V-1s-1 and a subthreshold swing SS ≈ 10â Vâ dec-1. Current-voltage characterization at different temperatures reveals that the device presents two slightly different asymmetric Schottky barriers at drain and source contacts. Self-powered photoconduction driven by the photovoltaic effect is demonstrated, and a photoresponsivity R ≈ 10â mAW-1 at 2 V drain bias and room temperature. Moreover, the transistor is tested for data storage applications. A two-state memory is reported, where positive and negative gate pulses drive the switching between two different current states, separated by a window of 130%. Finally, gate and light pulses are combined to demonstrate an optoelectronic memory with four well-separated states. The results herein presented are promising for data storage, Boolean logic, and neural network applications.
RESUMEN
Clean water is vital for healthy ecosystems, for human life and, in a broader sense, it is directly linked to our socio-economic development. Nevertheless, climate change, pollution and increasing world population will likely make clean water scarcer in the near future. Consequently, it becomes imperative to develop novel materials and more efficient ways of treating waste and contaminated water. Carbon nanotube (CNT) sponges, for example, are excellent in removing oleophilic contaminants; however, due to their super-hydrophobic nature, they are not as efficient when it comes to absorbing water-soluble substances. Here, by means of a scalable method consisting of simply treating CNT sponges at mild temperatures in air, we attach oxygen-containing functional groups to the CNT surface. The functionalized sponge becomes hydrophilic while preserving its micro- and macro-structure and can therefore be used to successfully remove toxic contaminants, such as pesticides, that are dissolved in water. This discovery expands the current range of applications of CNT sponges to those fields in which a hydrophilic character of the sponge is more suitable.
RESUMEN
We investigate the oxidation mechanism of the layered model system GeAs. In situ X-ray photoelectron spectroscopy experiments performed by irradiating an individual flake with synchrotron radiation in the presence of oxygen show that while As leaves the GeAs surface upon oxidation, a Ge-rich ultrathin oxide film is being formed in the topmost layer of the flake. We develop a theoretical model that supports the layer-by-layer oxidation of GeAs, with a logarithmic kinetics. Finally, assuming that the activation energy for the oxidation process changes linearly with coverage, we estimate that the activation energy for As oxidation is almost twice that for Ge at room temperature.
RESUMEN
Systems comprising single and multilayer graphene deposited on metals and immersed in acid environments have been investigated, with the aim of elucidating the mechanisms involved, for instance, in hydrogen production or metal protection from corrosion. In this work, a relevant system, namely chemical vapor deposited (CVD) multilayer graphene/Ni (MLGr/Ni), is studied when immersed in a diluted sulfuric electrolyte. The MLGr/Ni electrochemical and morphological properties are studied in situ and interpreted in light of the highly oriented pyrolytic graphite (HOPG) electrode behavior, when immersed in the same electrolyte. Following this interpretative framework, the dominant role of the Ni substrate in hydrogen production is clarified.
RESUMEN
In the present work, by using molecular dynamics (MD) simulations, we investigate the mechanical properties of different nanostructures that may be core elements in next generation flexible/wearable photovoltaic devices, namely double layer WS2nanosheets (DLNS), graphene/WS2(layer) composites and graphene/WS2nanotube (NT) composites. Our results reveal that the mechanical properties of DLNS deteriorate when compared to those of monolayer WS2. Owing to graphene's reinforcement action, the mechanical properties of graphene/WS2(layer) composite with both layers deformed are superior than those of WS2, even though inferior than those of bare graphene. If stress is applied only to the graphene layer, the graphene/WS2composite retains the most of the strength and toughness of monolayer graphene, decreasing the fracture strength and Young's modulus by only 9.7% and 16.3%, respectively. Similarly, in the case of the graphene/WS2NT composite the mechanical strength and toughness experience a reduction compared to monolayer graphene, specifically by 15% and 53% for fracture strength and Young's modulus, respectively. Considering the market's keen interest in nanomaterials, particularly van der Waals (vdW) ones, for flexible and wearable photovoltaic devices, the findings presented here will significantly enhance the effective utilization of vdW composites.
RESUMEN
Chalcogen bonding interactions (ChBIs) have been widely employed to create ordered noncovalent assemblies in solids and liquids. Yet, their ability to engineer molecular self-assembly on surfaces has not been demonstrated. Here, we report the first demonstration of on-surface molecular recognition solely governed by ChBIs. Scanning tunneling microscopy and ab initio calculations reveal that a pyrenyl derivative can undergo noncovalent chiral dimerization on the Au(111) surface through double Ch···N interactions involving Te- or Se-containing chalcogenazolo pyridine motifs. In contrast, reference chalcogenazole counterparts lacking the pyridyl moiety fail to form regular self-assemblies on Au, resulting in disordered assemblies.
RESUMEN
Biochar has been used in various applications, e.g., as a soil conditioner and in remediation of contaminated water, wastewater, and gaseous emissions. In the latter application, biochar was shown to be a suitable alternative to activated carbon, providing high treatment efficiency. Since biochar is a by-product of waste pyrolysis, its use allows for compliance with circular economics. Thus, this research aims to obtain a detailed characterization of three carbonaceous materials: an activated carbon (CARBOSORB NC 1240®) and two biochars (RE-CHAR® and AMBIOTON®). In particular, the objective of this work is to compare the properties of three carbonaceous materials to evaluate whether the application of the two biochars is the same as that of activated carbon. The characterization included, among others, particle size distribution, elemental analysis, pH, scanning electron microscope, pore volume, specific surface area, and ionic exchange capacity. The results showed that CARBOSORB NC 1240® presented a higher specific surface (1126.64 m2/g) than AMBIOTON® (256.23 m2/g) and RE-CHAR® (280.25 m2/g). Both biochar and activated carbon belong to the category of mesoporous media, showing a pore size between 2 and 50 nm (20-500 Å). Moreover, the chemical composition analysis shows similar C, H, and N composition in the three carbonaceous materials while a higher O composition in RE-CHAR® (9.9%) than in CARBOSORB NC 1240 ® (2.67%) and AMBIOTON® (1.10%). Differences in physical and chemical properties are determined by the feedstock and pyrolysis or gasification temperature. The results obtained allowed to compare the selected materials among each other and with other carbonaceous adsorbents.
RESUMEN
We report on a significant photocurrent generation from a planar device obtained by coating a bare n doped silicon substrate with a random network of multiwall carbon nanotubes (MWCNTs). This MWCNT/n-Si hybrid device exhibits an incident photon to current efficiency reaching up to 34% at 670 nm. We also show that MWCNTs covering a quartz substrate still exhibit photocurrent, though well below than that of the MWCNTs coating the silicon substrate. These results suggest that MWCNTs are able to generate photocurrent and that the silicon substrate plays a fundamental role in our planar device. The former effect is particularly interesting because MWCNTs are generally known to mimic the electronic properties of graphite, which does not present any photocurrent generation. On the basis of theoretical calculations revealing a weak metallic character for MWCNTs, we suggest that both metallic and semiconducting nanotubes are able to generate e-h pairs upon illumination. This can be ascribed to the presence of van Hove singularities in the density of states of each single wall carbon nanotube constituting the MWCNT and to the low density of electrons at the Fermi level. Finally, we suggest that though both MWCNTs and Si substrate are involved in the photocurrent generation process, MWCNT film mainly acts as a semitransparent electrode in our silicon-based device.
RESUMEN
Combining scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we demonstrate how to tune the doping of epitaxial graphene from p to n by exploiting the structural changes that occur spontaneously on the Ge surface upon thermal annealing. Furthermore, using first-principle calculations, we build a model that successfully reproduces the experimental observations. Since the ability to modify graphene electronic properties is of fundamental importance when it comes to applications, our results provide an important contribution toward the integration of graphene with conventional semiconductors.
RESUMEN
The physical properties of two-dimensional (2D) materials depend strongly on the number of layers. Hence, methods for controlling their thickness with atomic layer precision are highly desirable, yet still too rare, and demonstrated for only a limited number of 2D materials. Here, we present a simple and scalable method for the continuous layer-by-layer thinning that works for a large class of 2D materials, notably layered germanium pnictides and chalcogenides. It is based on a simple oxidation/etching process, which selectively occurs on the topmost layers. Through a combination of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction experiments we demonstrate the thinning method on germanium arsenide (GeAs), germanium sulfide (GeS), and germanium disulfide (GeS2). We use first-principles simulation to provide insights into the oxidation mechanism. Our strategy, which could be applied to other classes of 2D materials upon proper choice of the oxidation/etching reagent, supports 2D material-based device applications, e.g., in electronics or optoelectronics, where a precise control over the number of layers (hence over the material's physical properties) is needed. Finally, we also show that when used in combination with lithography, our method can be used to make precise patterns in the 2D materials.
RESUMEN
We report a cathodoluminescence (CL) study of layered germanium sulfide (GeS) where we observe a sharp emission peak from flakes covered with a thin hexagonal boron nitride film. GeS is a material that has recently attracted considerable interest due to its emission in the visible region and its strong anisotropy. The measured CL peak is at ~1.69 eV for samples ranging in thickness from 97 nm to 45 nm, where quantum-confinement effects can be excluded. By performing ab initio ground- and excited-state simulations for the bulk compound, we show that the measured optical peak can be unambiguously explained by radiative recombination of the first free bright bound exciton, which is due to a mixing of direct transitions near the Γ-point of the Brillouin Zone and it is associated to a very large optical anisotropy. The analysis of the corresponding excitonic wave function shows a Wannier-Mott interlayer character, being spread not only in-plane but also out-of-plane.
RESUMEN
We report the fabrication and electrical characterization of germanium arsenide (GeAs) field-effect transistors with ultrathin channels. The electrical transport is investigated in the 20-280 K temperature range, revealing that the p-type electrical conductivity and the field-effect mobility are growing functions of temperature. An unexpected peak is observed in the temperature dependence of the carrier density per area at â¼75 K. Such a feature is explained considering that the increased carrier concentration at higher temperatures and the vertical band bending combined with the gate field lead to the formation of a two-dimensional (2D) conducting channel, limited to few interfacial GeAs layers, which dominates the channel conductance. The conductivity follows the variable-range hopping model at low temperatures and becomes the band-type at higher temperatures when the 2D channel is formed. The formation of the 2D channel is validated through a numerical simulation that shows excellent agreement with the experimental data.
RESUMEN
The availability of an accurate, nondestructive method for measuring thickness and continuity of two-dimensional (2D) materials with monolayer sensitivity over large areas is of pivotal importance for the development of new applications based on these materials. While simple optical contrast methods and electrical measurements are sufficient for the case of metallic and semiconducting 2D materials, the low optical contrast and high electrical resistivity of wide band gap dielectric 2D materials such as hexagonal boron nitride (hBN) hamper their characterization. In this work, we demonstrate a nondestructive method to quantitatively map the thickness and continuity of hBN monolayers and bilayers over large areas. The proposed method is based on acquisition and subsequent fitting of ellipsometry spectra of hBN on Si/SiO2 substrates. Once a proper optical model is developed, it becomes possible to identify and map the commonly observed polymer residuals from the transfer process and obtain submonolayer thickness sensitivity for the hBN film. With some assumptions on the optical functions of hBN, the thickness of an as-transferred hBN monolayer on SiO2 is measured as 4.1 Å ± 0.1 Å, whereas the thickness of an air-annealed hBN monolayer on SiO2 is measured as 2.5 Å ± 0.1 Å. We argue that the difference in the two measured values is due to the presence of a water layer trapped between the SiO2 surface and the hBN layer in the latter case. The procedure can be fully automated to wafer scale and extended to other 2D materials transferred onto any polished substrate, as long as their optical functions are approximately known.
RESUMEN
The ability to fabricate nanoscale domains of uniform size in two-dimensional materials could potentially enable new applications in nanoelectronics and the development of innovative metamaterials. However, achieving even minimal control over the growth of two-dimensional lateral heterostructures at such extreme dimensions has proven exceptionally challenging. Here we show the spontaneous formation of ordered arrays of graphene nano-domains (dots), epitaxially embedded in a two-dimensional boron-carbon-nitrogen alloy. These dots exhibit a strikingly uniform size of 1.6 ± 0.2 nm and strong ordering, and the array periodicity can be tuned by adjusting the growth conditions. We explain this behaviour with a model incorporating dot-boundary energy, a moiré-modulated substrate interaction and a long-range repulsion between dots. This new two-dimensional material, which theory predicts to be an ordered composite of uniform-size semiconducting graphene quantum dots laterally integrated within a larger-bandgap matrix, holds promise for novel electronic and optoelectronic properties, with a variety of potential device applications.The nanoscale patterning of two-dimensional materials offers the possibility of novel optoelectronic properties; however, it remains challenging. Here, Camilli et al. show the self-assembly of large arrays of highly-uniform graphene dots imbedded in a BCN matrix, enabling novel devices.
RESUMEN
Change History: A correction to this article has been published and is linked from the HTML version of this article.
RESUMEN
We have taken advantage of the native surface roughness and the iron content of AISI-316 stainless steel to grow multiwalled carbon nanotubes (MWCNTs) by chemical vapour deposition without the addition of an external catalyst. The structural and electronic properties of the synthesized carbon nanostructures have been investigated by a range of electron microscopy and spectroscopy techniques. The results show the good quality and the high graphitization degree of the synthesized MWCNTs. Through energy-loss spectroscopy we found that the electronic properties of these nanostructures are markedly different from those of highly oriented pyrolytic graphite (HOPG). Notably, a broadening of the π-plasmon peak in the case of MWCNTs is evident. In addition, a photocurrent was measured when MWCNTs were airbrushed onto a silicon substrate. External quantum efficiency (EQE) and photocurrent values were reported both in planar and in top-down geometry of the device. Marked differences in the line shapes and intensities were found for the two configurations, suggesting that two different mechanisms of photocurrent generation and charge collection are in operation. From this comparison, we are able to conclude that the silicon substrate plays an important role in the production of electron-hole pairs.