Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nano Lett ; 24(2): 566-575, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37962055

RESUMEN

Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.


Asunto(s)
Técnicas Biosensibles , Nanofibras , Técnicas Biosensibles/métodos , Seda , Semiconductores , Bacterias
2.
Opt Express ; 31(6): 9727-9728, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157535

RESUMEN

The beam shape coefficients for cylindrical vector modes are of great importance for other researchers to reproduce our results, however they were accidentally reported incorrectly in our recently published manuscript [Opt. Express30(14), 24407 (2022)10.1364/OE.458674]. This erratum reports the correct form for the two expressions. Two typographical errors in auxiliary equations are also reported and two labels in particle time of flight probability density function plots are fixed.

3.
Eur Phys J E Soft Matter ; 46(5): 32, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154834

RESUMEN

Tracking droplets in microfluidics is a challenging task. The difficulty arises in choosing a tool to analyze general microfluidic videos to infer physical quantities. The state-of-the-art object detector algorithm You Only Look Once (YOLO) and the object tracking algorithm Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) are customizable for droplet identification and tracking. The customization includes training YOLO and DeepSORT networks to identify and track the objects of interest. We trained several YOLOv5 and YOLOv7 models and the DeepSORT network for droplet identification and tracking from microfluidic experimental videos. We compare the performance of the droplet tracking applications with YOLOv5 and YOLOv7 in terms of training time and time to analyze a given video across various hardware configurations. Despite the latest YOLOv7 being 10% faster, the real-time tracking is only achieved by lighter YOLO models on RTX 3070 Ti GPU machine due to additional significant droplet tracking costs arising from the DeepSORT algorithm. This work is a benchmark study for the YOLOv5 and YOLOv7 networks with DeepSORT in terms of the training time and inference time for a custom dataset of microfluidic droplets.

4.
Opt Express ; 30(14): 24407-24420, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236996

RESUMEN

Optical forces on microspheres inside hollow core photonic crystal fibers (HC-PCFs) are often predicted using a ray optics model, which constrains its validity based on wavelength and microsphere sizes. Here, we introduce a rigorous treatment of the electromagnetic forces based on the Lorenz-Mie theory, which involves analytical determination of beam shape coefficients for the optical modes of a HC-PCF. The method is more practicable than numerical approaches and, in contrast with ray optics models, it is not limited by system size parameters. Time of flight measurements of microspheres flying through the HC-PCF lead to results consistent with the Lorenz-Mie predictions.

5.
Biomacromolecules ; 22(7): 3084-3098, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34151565

RESUMEN

Intrinsically conducting polymers (ICPs) are widely used to fabricate biomaterials; their application in neural tissue engineering, however, is severely limited because of their hydrophobicity and insufficient mechanical properties. For these reasons, soft conductive polymer hydrogels (CPHs) are recently developed, resulting in a water-based system with tissue-like mechanical, biological, and electrical properties. The strategy of incorporating ICPs as a conductive component into CPHs is recently explored by synthesizing the hydrogel around ICP chains, thus forming a semi-interpenetrating polymer network (semi-IPN). In this work, a novel conductive semi-IPN hydrogel is designed and synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) hydrogel where polythiophene is introduced as an ICP to provide the system with good electrical properties. The fabrication of the hybrid hydrogel in an aqueous medium is made possible by modifying and synthesizing the monomers of polythiophene to ensure water solubility. The morphological, chemical, thermal, electrical, electrochemical, and mechanical properties of semi-IPNs were fully investigated. Additionally, the biological response of neural progenitor cells and mesenchymal stem cells in contact with the conductive semi-IPN was evaluated in terms of neural differentiation and proliferation. Lastly, the potential of the hydrogel solution as a 3D printing ink was evaluated through the 3D laser printing method. The presented results revealed that the proposed 3D printable conductive semi-IPN system is a good candidate as a scaffold for neural tissue applications.


Asunto(s)
Hidrogeles , Tejido Nervioso , Conductividad Eléctrica , Polímeros , Ingeniería de Tejidos
6.
Small ; 14(19): e1800187, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29655227

RESUMEN

Hybrid polymer-plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long-range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal-enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire-related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position-dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble-averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire-enhanced MEF effects associated to them, are highly relevant for developing nanoscale light-emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures.

7.
Opt Express ; 25(20): 24604-24614, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041405

RESUMEN

Complex assemblies of light-emitting polymer nanofibers with molecular materials exhibiting optical gain can lead to important advance to amorphous photonics and to random laser science and devices. In disordered mats of nanofibers, multiple scattering and waveguiding might interplay to determine localization or spreading of optical modes as well as correlation effects. Here we study electrospun fibers embedding a lasing fluorene-carbazole-fluorene molecule and doped with titania nanoparticles, which exhibit random lasing with sub-nm spectral width and threshold of about 9 mJ cm-2 for the absorbed excitation fluence. We focus on the spatial and spectral behavior of optical modes in the disordered and non-woven networks, finding evidence for the presence of modes with very large spatial extent, up to the 100 µm-scale. These findings suggest emission coupling into integrated nanofiber transmission channels as effective mechanism for enhancing spectral selectivity in random lasers and correlations of light modes in the complex and disordered material.

8.
J Am Chem Soc ; 138(47): 15497-15505, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27933935

RESUMEN

Conjugated polymers are complex multichromophore systems, with emission properties strongly dependent on the electronic energy transfer through active subunits. Although the packing of the conjugated chains in the solid state is known to be a key factor to tailor the electronic energy transfer and the resulting optical properties, most of the current solution-based processing methods do not allow for effectively controlling the molecular order, thus making the full unveiling of energy transfer mechanisms very complex. Here we report on conjugated polymer fibers with tailored internal molecular order, leading to a significant enhancement of the emission quantum yield. Steady state and femtosecond time-resolved polarized spectroscopies evidence that excitation is directed toward those chromophores oriented along the fiber axis, on a typical time scale of picoseconds. These aligned and more extended chromophores, resulting from the high stretching rate and electric field applied during the fiber spinning process, lead to improved emission properties. Conjugated polymer fibers are relevant to develop optoelectronic plastic devices with enhanced and anisotropic properties.

9.
Mol Pharm ; 13(3): 729-36, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26870885

RESUMEN

Core-shell fibers are emerging as interesting microstructures for the controlled release of drugs, proteins, and complex biological molecules, enabling the fine control of microreservoirs of encapsulated active agents, of the release kinetics, and of the localized delivery. Here we load luminescent molecules and enhanced green fluorescent proteins into the core of fibers realized by coaxial electrospinning. Photoluminescence spectroscopy evidences unaltered molecular emission following encapsulation and release. Moreover, the release kinetics is microscopically investigated by confocal analysis at individual-fiber scale, unveiling different characteristic time scales for diffusional translocation at the core and at the shell. These results are interpreted by a two stage desorption model for the coaxial microstructure, and they are relevant in the design and development of efficient fibrous systems for the delivery of functional biomolecules.


Asunto(s)
Técnicas Electroquímicas/métodos , Proteínas Fluorescentes Verdes/metabolismo , Nanofibras/química , Polímeros/química , Difusión , Humanos , Solubilidad
10.
Anal Bioanal Chem ; 408(5): 1357-64, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26670770

RESUMEN

Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for surface-enhanced Raman scattering (SERS) analysis. Their complex three-dimensional structure may provide Raman signals enhanced by orders of magnitude compared to untextured surfaces. Understanding the origin of such improved performances is therefore very important for pushing nanofiber-based analytical technologies to their upper limit. Here, we report on polymer nanofiber mats which can be exploited as substrates for enhancing the Raman spectra of adsorbed probe molecules. The increased surface area and the scattering of light in the nanofibrous system are individually analyzed as mechanisms to enhance Raman scattering. The deposition of gold nanorods on the fibers further amplifies Raman signals due to SERS. This study suggests that Raman signals can be finely tuned in intensity and effectively enhanced in nanofiber mats and arrays by properly tailoring the architecture, composition, and light-scattering properties of the complex networks of filaments.

11.
Soft Matter ; 11(17): 3424-31, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25855945

RESUMEN

Electrospun polymer jets are imaged for the first time at an ultra-high rate of 10,000 frames per second, investigating the process dynamics, and the instability propagation velocity and displacement in space. The polymer concentration, applied voltage bias and needle-collector distance are systematically varied, and their influence on the instability propagation velocity and on the jet angular fluctuations is analyzed. This allows us to unveil the instability formation and cycling behavior, and its exponential growth at the onset, exhibiting radial growth rates of the order of 10(3) s(-1). Allowing the conformation and evolution of polymeric solutions to be studied in depth, high-speed imaging at the sub-ms scale shows significant potential for improving the fundamental knowledge of electrified jets, leading to finely controllable bending and solution stretching in electrospinning, and consequently better designed nanofiber morphologies and structures.

12.
J Am Chem Soc ; 136(40): 14245-54, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25264943

RESUMEN

While most of the studies on molecular machines have been performed in solution, interfacing these supramolecular systems with solid-state nanostructures and materials is very important in view of their utilization in sensing components working by chemical and photonic actuation. Host polymeric materials, and particularly polymer nanofibers, enable the manipulation of the functional molecules constituting molecular machines and provide a way to induce and control the supramolecular organization. Here, we present electrospun nanocomposites embedding a self-assembling rotaxane-type system that is responsive to both optical (UV-vis light) and chemical (acid/base) stimuli. The system includes a molecular axle comprised of a dibenzylammonium recognition site and two azobenzene end groups and a dibenzo[24]crown-8 molecular ring. The dethreading and rethreading of the molecular components in nanofibers induced by exposure to base and acid vapors, as well as the photoisomerization of the azobenzene end groups, occur in a similar manner to what observed in solution. Importantly, however, the nanoscale mechanical function following external chemical stimuli induces a measurable variation of the macroscopic mechanical properties of nanofibers aligned in arrays, whose Young's modulus is significantly enhanced upon dethreading of the axles from the rings. These composite nanosystems show therefore great potential for application in chemical sensors, photonic actuators, and environmentally responsive materials.

13.
Langmuir ; 30(6): 1643-9, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24490972

RESUMEN

The nanopatterning of light-emitting molecular crystals with semiconducting properties can be crucial for the development of future optoelectronic and nanoelectronic devices based on organic materials. In this respect, electron-beam writing is a powerful tool to realize patterns at the nanoscale, but it is still rarely applied to active organic materials. Here, sub-100-nm-scale nanopatterning is performed on the surface of quaterthiophene monocrystals by direct maskless electron-beam writing. Gratings are produced on organic crystals with periods ranging from 80 nm to 1 µm and single-line lateral dimensions ranging from 20 to 500 nm, with electron-beam exposure doses between 100 and 1500 µC/cm(2). The morphological and texturing properties of the pattern are discussed, together with the interaction mechanisms between the electron beam and the crystal. The resulting modulation of the light emission is consistent with Bragg scattering from the patterned periodic features.

14.
Nano Lett ; 13(11): 5056-62, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24090350

RESUMEN

The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and understood. Here, we unravel the internal structure of electrospun functional nanofibers made by prototype conjugated polymers. The unique features of near-field optical measurements are exploited to investigate the nanoscale spatial variation of the polymer density, evidencing the presence of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young's modulus demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of polymer fibers.

15.
Nanophotonics ; 13(14): 2541-2551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38836104

RESUMEN

Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer. These results pave the way for synthesizing effective gating systems for the transport of energy by light, relevant for light-harvesting and light-emitting devices, and for photovoltaic cells.

16.
ACS Appl Nano Mater ; 5(3): 3654-3666, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35372796

RESUMEN

The molecular orientation in polymer fibers is investigated for the purpose of enhancing their optical properties through nanoscale control by nanowires mixed in electrospun solutions. A prototypical system, consisting of a conjugated polymer blended with polyvinylpyrrolidone, mixed with WO3 nanowires, is analyzed. A critical strain rate of the electrospinning jet is determined by theoretical modeling at which point the polymer network undergoes a stretch transition in the fiber direction, resulting in a high molecular orientation that is partially retained after solidification. Nearing a nanowire boundary, local adsorption of the polymer and hydrodynamic drag further enhance the molecular orientation. These theoretical predictions are supported by polarized scanning near-field optical microscopy experiments, where the dichroic ratio of the light transmitted by the fiber provides evidence of increased orientation nearby nanowires. The addition of nanowires to enhance molecular alignment in polymer fibers might consequently enhance properties such as photoluminescence quantum yield, polarized emission, and tailored energy migration, exploitable in light-emitting photonic and optoelectronic devices and for sensing applications.

17.
Nat Commun ; 13(1): 6493, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36310173

RESUMEN

Recently, random lasing in complex networks has shown efficient lasing over more than 50 localised modes, promoted by multiple scattering over the underlying graph. If controlled, these network lasers can lead to fast-switching multifunctional light sources with synthesised spectrum. Here, we observe both in experiment and theory high sensitivity of the network laser spectrum to the spatial shape of the pump profile, with some modes for example increasing in intensity by 280% when switching off 7% of the pump beam. We solve the nonlinear equations within the steady state ab-initio laser theory (SALT) approximation over a graph and we show selective lasing of around 90% of the strongest intensity modes, effectively programming the spectrum of the lasing networks. In our experiments with polymer networks, this high sensitivity enables control of the lasing spectrum through non-uniform pump patterns. We propose the underlying complexity of the network modes as the key element behind efficient spectral control opening the way for the development of optical devices with wide impact for on-chip photonics for communication, sensing, and computation.

18.
Nanoscale ; 14(25): 8901-8905, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35719059

RESUMEN

The supramolecular organization of Doxorubicin (DOX) within the standard Doxoves® liposomal formulation (DOX®) is investigated using visible light and phasor approach to fluorescence lifetime imaging (phasor-FLIM). First, the phasor-FLIM signature of DOX® is resolved into the contribution of three co-existing fluorescent species, each with its characteristic mono-exponential lifetime, namely: crystallized DOX (DOXc, 0.2 ns), free DOX (DOXf, 1.0 ns), and DOX bound to the liposomal membrane (DOXb, 4.5 ns). Then, the exact molar fractions of the three species are determined by combining phasor-FLIM with quantitative absorption/fluorescence spectroscopy on DOXc, DOXf, and DOXb pure standards. The final picture on DOX® comprises most of the drug in the crystallized form (∼98%), with the remaining fractions divided between free (∼1.4%) and membrane-bound drug (∼0.7%). Finally, phasor-FLIM in the presence of a DOX dynamic quencher allows us to suggest that DOXf is both encapsulated and non-encapsulated, and that DOXb is present on both liposome-membrane leaflets. We argue that the present experimental protocol can be applied to the investigation of the supramolecular organization of encapsulated luminescent drugs/molecules all the way from the production phase to their state within living matter.


Asunto(s)
Doxorrubicina , Polietilenglicoles , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Liposomas , Microscopía Fluorescente/métodos
19.
ACS Nano ; 15(5): 8753-8760, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33961409

RESUMEN

Circularly polarized (CP) lasers derived from low-cost and renewable raw sources are attracting increasing attention in photonics and material science. Here, we present a facile and effective approach to fabricate CP lasers by the evaporation-induced assembly of cellulose nanocrystals (CNCs) and a laser dye. The obtained laser exhibits a controlled chiral nematic structure, which acts as a chiral optical cavity, and varied chiral coupling interactions. It is shown that the CNC-based laser can modify the polarization state of the laser into left-handed polarization, leading to strong CP laser emission (CPLE) with a dissymmetry factor up to 0.35. The chiral nematic CNC structure proves to be a versatile yet straightforward strategy to generate strong and tailored CPLE.

20.
J Phys Chem Lett ; 12(29): 7034-7040, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34286984

RESUMEN

The delivery of optical signals from an external light source to a nanoscale waveguide is highly important for the development of nanophotonic circuits. However, the efficient coupling of external light energy into nanophotonic components is difficult and still remains a challenge. Herein, we use an external silica nanofiber to light up an organic-inorganic hybrid nanowaveguide, namely, a system composed of a polymer filament doped with MoS2 quantum dots. Nanofiber-excited nanowaveguides in a crossed geometry are found to asymmetrically couple excitation signals along two opposite directions, with different energy dissipation resulting in different colors of the light emitted by MoS2 quantum dots and collected from the waveguide terminals. Interestingly, rainbow-like light in the hybrid waveguide is achieved by three-in-one mixing of red, green, and blue components. This heterodimensional system of dots in waveguide represents a significant advance toward all-optical routing and full-color display in integrated nanophotonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA