Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(2): 317-328.e10, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526205

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive malignancy with its global incidence and mortality rate continuing to rise, although early detection and surveillance are suboptimal. We performed serological profiling of the viral infection history in 899 individuals from an NCI-UMD case-control study using a synthetic human virome, VirScan. We developed a viral exposure signature and validated the results in a longitudinal cohort with 173 at-risk patients who had long-term follow-up for HCC development. Our viral exposure signature significantly associated with HCC status among at-risk individuals in the validation cohort (area under the curve: 0.91 [95% CI 0.87-0.96] at baseline and 0.98 [95% CI 0.97-1] at diagnosis). The signature identified cancer patients prior to a clinical diagnosis and was superior to alpha-fetoprotein. In summary, we established a viral exposure signature that can predict HCC among at-risk patients prior to a clinical diagnosis, which may be useful in HCC surveillance.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Virosis/patología , Adulto , Anciano , Área Bajo la Curva , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Curva ROC , Factores de Riesgo , Virosis/complicaciones , Adulto Joven , alfa-Fetoproteínas/análisis
2.
Immunity ; 50(1): 91-105.e4, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30638736

RESUMEN

Memory CD4+ T cells mediate long-term immunity, and their generation is a key objective of vaccination strategies. However, the transcriptional circuitry controlling the emergence of memory cells from early CD4+ antigen-responders remains poorly understood. Here, using single-cell RNA-seq to study the transcriptome of virus-specific CD4+ T cells, we identified a gene signature that distinguishes potential memory precursors from effector cells. We found that both that signature and the emergence of memory CD4+ T cells required the transcription factor Thpok. We further demonstrated that Thpok cell-intrinsically protected memory cells from a dysfunctional, effector-like transcriptional program, similar to but distinct from the exhaustion pattern of cells responding to chronic infection. Mechanistically, Thpok- bound genes encoding the transcription factors Blimp1 and Runx3 and acted by antagonizing their expression. Thus, a Thpok-dependent circuitry promotes both memory CD4+ T cells' differentiation and functional fitness, two previously unconnected critical attributes of adaptive immunity.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Subgrupos de Linfocitos T/fisiología , Factores de Transcripción/metabolismo , Animales , Antígenos Virales/inmunología , Diferenciación Celular , Células Cultivadas , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Memoria Inmunológica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Unión Proteica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Transcripción/genética , Transcriptoma
3.
Ann Neurol ; 95(2): 260-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37801487

RESUMEN

OBJECTIVE: Few studies have comprehensively examined how health and disease risk influence Alzheimer's disease (AD) biomarkers. The present study examined the association of 14 protein-based health indicators with plasma and neuroimaging biomarkers of AD and neurodegeneration. METHODS: In 706 cognitively normal adults, we examined whether 14 protein-based health indices (ie, SomaSignal® tests) were associated with concurrently measured plasma-based biomarkers of AD pathology (amyloid-ß [Aß]42/40 , tau phosphorylated at threonine-181 [pTau-181]), neuronal injury (neurofilament light chain [NfL]), and reactive astrogliosis (glial fibrillary acidic protein [GFAP]), brain volume, and cortical Aß and tau. In a separate cohort (n = 11,285), we examined whether protein-based health indicators associated with neurodegeneration also predict 25-year dementia risk. RESULTS: Greater protein-based risk for cardiovascular disease, heart failure mortality, and kidney disease was associated with lower Aß42/40 and higher pTau-181, NfL, and GFAP levels, even in individuals without cardiovascular or kidney disease. Proteomic indicators of body fat percentage, lean body mass, and visceral fat were associated with pTau-181, NfL, and GFAP, whereas resting energy rate was negatively associated with NfL and GFAP. Together, these health indicators predicted 12, 31, 50, and 33% of plasma Aß42/40 , pTau-181, NfL, and GFAP levels, respectively. Only protein-based measures of cardiovascular risk were associated with reduced regional brain volumes; these measures predicted 25-year dementia risk, even among those without clinically defined cardiovascular disease. INTERPRETATION: Subclinical peripheral health may influence AD and neurodegenerative disease processes and relevant biomarker levels, particularly NfL. Cardiovascular health, even in the absence of clinically defined disease, plays a central role in brain aging and dementia. ANN NEUROL 2024;95:260-273.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Cardiovasculares , Enfermedades Renales , Enfermedades Neurodegenerativas , Adulto , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Proteómica , Péptidos beta-Amiloides , Biomarcadores , Proteínas tau
4.
Circ Res ; 132(11): 1428-1443, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37154037

RESUMEN

BACKGROUND: Few effective therapies exist to improve lower extremity muscle pathology and mobility loss due to peripheral artery disease (PAD), in part because mechanisms associated with functional impairment remain unclear. METHODS: To better understand mechanisms of muscle impairment in PAD, we performed in-depth transcriptomic and proteomic analyses on gastrocnemius muscle biopsies from 31 PAD participants (mean age, 69.9 years) and 29 age- and sex-matched non-PAD controls (mean age, 70.0 years) free of diabetes or limb-threatening ischemia. RESULTS: Transcriptomic and proteomic analyses suggested activation of hypoxia-compensatory mechanisms in PAD muscle, including inflammation, fibrosis, apoptosis, angiogenesis, unfolded protein response, and nerve and muscle repair. Stoichiometric proportions of mitochondrial respiratory proteins were aberrant in PAD compared to non-PAD, suggesting that respiratory proteins not in complete functional units are not removed by mitophagy, likely contributing to abnormal mitochondrial activity. Supporting this hypothesis, greater mitochondrial respiratory protein abundance was significantly associated with greater complex II and complex IV respiratory activity in non-PAD but not in PAD. Rate-limiting glycolytic enzymes, such as hexokinase and pyruvate kinase, were less abundant in muscle of people with PAD compared with non-PAD participants, suggesting diminished glucose metabolism. CONCLUSIONS: In PAD muscle, hypoxia induces accumulation of mitochondria respiratory proteins, reduced activity of rate-limiting glycolytic enzymes, and an enhanced integrated stress response that modulates protein translation. These mechanisms may serve as targets for disease modification.


Asunto(s)
Enfermedad Arterial Periférica , Transcriptoma , Humanos , Anciano , Proteómica , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Hipoxia/metabolismo
5.
Cereb Cortex ; 33(6): 2682-2703, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35697648

RESUMEN

Despite decades of costly research, we still cannot accurately predict individual differences in cognition from task-based functional magnetic resonance imaging (fMRI). Moreover, aiming for methods with higher prediction is not sufficient. To understand brain-cognition relationships, we need to explain how these methods draw brain information to make the prediction. Here we applied an explainable machine-learning (ML) framework to predict cognition from task-based fMRI during the n-back working-memory task, using data from the Adolescent Brain Cognitive Development (n = 3,989). We compared 9 predictive algorithms in their ability to predict 12 cognitive abilities. We found better out-of-sample prediction from ML algorithms over the mass-univariate and ordinary least squares (OLS) multiple regression. Among ML algorithms, Elastic Net, a linear and additive algorithm, performed either similar to or better than nonlinear and interactive algorithms. We explained how these algorithms drew information, using SHapley Additive explanation, eNetXplorer, Accumulated Local Effects, and Friedman's H-statistic. These explainers demonstrated benefits of ML over the OLS multiple regression. For example, ML provided some consistency in variable importance with a previous study and consistency with the mass-univariate approach in the directionality of brain-cognition relationships at different regions. Accordingly, our explainable-ML framework predicted cognition from task-based fMRI with boosted prediction and explainability over standard methodologies.


Asunto(s)
Individualidad , Imagen por Resonancia Magnética , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Cognición , Encéfalo/diagnóstico por imagen , Algoritmos , Aprendizaje Automático
6.
Gerontology ; 70(3): 269-278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38219723

RESUMEN

INTRODUCTION: In aging populations, the coexistence of multiple health comorbidities represents a significant challenge for clinicians and researchers. Leveraging advances in omics techniques to characterize these health conditions may provide insight into disease pathogenesis as well as reveal biomarkers for monitoring, prognostication, and diagnosis. Researchers have previously established the utility of big data approaches with respect to comprehensive health outcome measurements in younger populations, identifying protein markers that may provide significant health information with a single blood sample. METHODS: Here, we employed a similar approach in two cohorts of older adults, the Baltimore Longitudinal Study of Aging (mean age = 76.12 years) and InCHIANTI Study (mean age = 66.05 years), examining the relationship between levels of serum proteins and 5 key health outcomes: kidney function, fasting glucose, physical activity, lean body mass, and percent body fat. RESULTS: Correlations between proteins and health outcomes were primarily shared across both older adult cohorts. We further identified that most proteins associated with health outcomes in the older adult cohorts were not associated with the same outcomes in a prior study of a younger population. A subset of proteins, adiponectin, MIC-1, and NCAM-120, were associated with at least three health outcomes in both older adult cohorts but not in the previously published younger cohort, suggesting that they may represent plausible markers of general health in older adult populations. CONCLUSION: Taken together, these findings suggest that comprehensive protein health markers have utility in aging populations and are distinct from those identified in younger adults, indicating unique mechanisms of disease with aging.


Asunto(s)
Envejecimiento , Proteómica , Humanos , Anciano , Estudios Longitudinales , Composición Corporal , Evaluación de Resultado en la Atención de Salud
7.
Stroke ; 54(11): 2853-2863, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37814955

RESUMEN

BACKGROUND: Proteins expressed by brain endothelial cells (BECs), the primary cell type of the blood-brain barrier, may serve as sensitive plasma biomarkers for neurological and neurovascular conditions, including cerebral small vessel disease. METHODS: Using data from the BLSA (Baltimore Longitudinal Study of Aging; n=886; 2009-2020), BEC-enriched proteins were identified among 7268 plasma proteins (measured with SomaScanv4.1) using an automated annotation algorithm that filtered endothelial cell transcripts followed by cross-referencing with BEC-specific transcripts reported in single-cell RNA-sequencing studies. To identify BEC-enriched proteins in plasma most relevant to the maintenance of neurological and neurovascular health, we selected proteins significantly associated with 3T magnetic resonance imaging-defined white matter lesion volumes. We then examined how these candidate BEC biomarkers related to white matter lesion volumes, cerebral microhemorrhages, and lacunar infarcts in the ARIC study (Atherosclerosis Risk in Communities; US multisite; 1990-2017). Finally, we determined whether these candidate BEC biomarkers, when measured during midlife, were related to dementia risk over a 25-year follow-up period. RESULTS: Of the 28 proteins identified as BEC-enriched, 4 were significantly associated with white matter lesion volumes (CDH5 [cadherin 5], CD93 [cluster of differentiation 93], ICAM2 [intracellular adhesion molecule 2], GP1BB [glycoprotein 1b platelet subunit beta]), while another approached significance (RSPO3 [R-Spondin 3]). A composite score based on 3 of these BEC proteins accounted for 11% of variation in white matter lesion volumes in BLSA participants. We replicated the associations between the BEC composite score, CDH5, and RSPO3 with white matter lesion volumes in ARIC, and further demonstrated that the BEC composite score and RSPO3 were associated with the presence of ≥1 cerebral microhemorrhages. We also showed that the BEC composite score, CDH5, and RSPO3 were associated with 25-year dementia risk. CONCLUSIONS: In addition to identifying BEC proteins in plasma that relate to cerebral small vessel disease and dementia risk, we developed a composite score of plasma BEC proteins that may be used to estimate blood-brain barrier integrity and risk for adverse neurovascular outcomes.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Humanos , Células Endoteliales/patología , Estudios Longitudinales , Encéfalo/patología , Biomarcadores/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/patología , Imagen por Resonancia Magnética
8.
J Physiol ; 600(21): 4731-4751, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36071599

RESUMEN

Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short-term unloading and active recovery (AR). Eleven healthy males underwent a 10-day unilateral lower limb suspension (ULLS) period, followed by 21-day AR based on resistance exercise. Quadriceps femoris (QF) cross-sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c-terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA-sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10-day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR. KEY POINTS: We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10-day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations. After 10-day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short-term disuse at least at relatively low contraction intensities, at which low-threshold, slow-type motor units are recruited. Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage. The active recovery period restored these neuromuscular changes.


Asunto(s)
Contracción Muscular , Transcriptoma , Masculino , Humanos , Contracción Muscular/fisiología , Unión Neuromuscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Electromiografía
9.
J Nutr ; 152(1): 40-48, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34550359

RESUMEN

BACKGROUND: Although diets rich in carotenoids are associated with reduced risks of cardiovascular disease, age-related macular degeneration, disability, and other adverse aging outcomes, the underlying biological mechanisms are not fully elucidated. OBJECTIVES: To characterize the plasma proteome fingerprint associated with circulating carotenoid and retinol concentrations in older adults. METHODS: In 728 adults ≥65 y participating in the Invecchiare in Chianti (InCHIANTI) Study, plasma α-carotene, ß-carotene, ß-cryptoxanthin, lutein, zeaxanthin, and lycopene were measured using HPLC. The SOMAscan assay was used to measure 1301 plasma proteins. Multivariable linear regression models were used to examine the relationship of individual carotenoids and retinol with plasma proteins. A false discovery rate approach was used to deal with multiple comparisons using a q-value < 0.05. RESULTS: Plasma ß-carotene, ß-cryptoxanthin, lutein, zeaxanthin, and lycopene were associated with 85, 39, 4, 2, and 5 plasma proteins, respectively, in multivariable linear regression models adjusting for potential confounders (q < 0.05). No proteins were associated with α-carotene or retinol. Two or more carotenoids were positively associated with ferritin, 6-phosphogluconate dehydrogenase (decarboxylating), hepcidin, thrombospondin-2, and choline/ethanolamine kinase. The proteins associated with circulating carotenoids were related to energy metabolism, sirtuin signaling, inflammation and oxidative stress, iron metabolism, proteostasis, innate immunity, and longevity. CONCLUSIONS: The plasma proteomic fingerprint associated with elevated circulating carotenoids in older adults provides insight into the mechanisms underlying the protective role of carotenoids on health.


Asunto(s)
Proteoma , Vitamina A , Carotenoides , Luteína , Proteómica , Zeaxantinas , beta Caroteno
10.
J Hepatol ; 75(6): 1397-1408, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34216724

RESUMEN

BACKGROUND & AIMS: Intratumor molecular heterogeneity is a key feature of tumorigenesis and is linked to treatment failure and patient prognosis. Herein, we aimed to determine what drives tumor cell evolution by performing single-cell transcriptomic analysis. METHODS: We analyzed 46 hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) biopsies from 37 patients enrolled in interventional studies at the NIH Clinical Center, with 16 biopsies collected before and after treatment from 7 patients. We developed a novel machine learning-based consensus clustering approach to track cellular states of 57,000 malignant and non-malignant cells including tumor cell transcriptome-based functional clonality analysis. We determined tumor cell relationships using RNA velocity and reverse graph embedding. We also studied longitudinal samples from 4 patients to determine tumor cellular state and its evolution. We validated our findings in bulk transcriptomic data from 488 patients with HCC and 277 patients with iCCA. RESULTS: Using transcriptomic clusters as a surrogate for functional clonality, we observed an increase in tumor cell state heterogeneity which was tightly linked to patient prognosis. Furthermore, increased functional clonality was accompanied by a polarized immune cell landscape which included an increase in pre-exhausted T cells. We found that SPP1 expression was tightly associated with tumor cell evolution and microenvironmental reprogramming. Finally, we developed a user-friendly online interface as a knowledge base for a single-cell atlas of liver cancer. CONCLUSIONS: Our study offers insight into the collective behavior of tumor cell communities in liver cancer as well as potential drivers of tumor evolution in response to therapy. LAY SUMMARY: Intratumor molecular heterogeneity is a key feature of tumorigenesis that is linked to treatment failure and patient prognosis. In this study, we present a single-cell atlas of liver tumors from patients treated with immunotherapy and describe intratumoral cell states and their hierarchical relationship. We suggest osteopontin, encoded by the gene SPP1, as a candidate regulator of tumor evolution in response to treatment.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Inmunoterapia/normas , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/ultraestructura , Biopsia/métodos , Biopsia/estadística & datos numéricos , Carcinoma Hepatocelular/fisiopatología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/fisiopatología , Humanos , Inmunoterapia/métodos , Inmunoterapia/estadística & datos numéricos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Células Neoplásicas Circulantes/clasificación
11.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333910

RESUMEN

Although mitochondrial dysfunction has been implicated in aging, physical function decline, and several age-related diseases, an accessible and affordable measure of mitochondrial health is still lacking. In this study we identified the proteomic signature of muscular mitochondrial oxidative capacity in plasma. In 165 adults, we analyzed the association between concentrations of plasma proteins, measured using the SOMAscan assay, and skeletal muscle maximal oxidative phosphorylation capacity assessed as post-exercise phosphocreatine recovery time constant (τPCr) by phosphorous magnetic resonance spectroscopy. Out of 1301 proteins analyzed, we identified 87 proteins significantly associated with τPCr, adjusting for age, sex, and phosphocreatine depletion. Sixty proteins were positively correlated with better oxidative capacity, while 27 proteins were correlated with poorer capacity. Specific clusters of plasma proteins were enriched in the following pathways: homeostasis of energy metabolism, proteostasis, response to oxidative stress, and inflammation. The generalizability of these findings would benefit from replication in an independent cohort and in longitudinal analyses.


Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Plasma/metabolismo , Proteoma/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Metabolismo Energético/fisiología , Femenino , Ontología de Genes , Humanos , Inflamación/sangre , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Proteómica , Especies Reactivas de Oxígeno/metabolismo
12.
BMC Bioinformatics ; 20(1): 189, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30991955

RESUMEN

BACKGROUND: Regularized generalized linear models (GLMs) are popular regression methods in bioinformatics, particularly useful in scenarios with fewer observations than parameters/features or when many of the features are correlated. In both ridge and lasso regularization, feature shrinkage is controlled by a penalty parameter λ. The elastic net introduces a mixing parameter α to tune the shrinkage continuously from ridge to lasso. Selecting α objectively and determining which features contributed significantly to prediction after model fitting remain a practical challenge given the paucity of available software to evaluate performance and statistical significance. RESULTS: eNetXplorer builds on top of glmnet to address the above issues for linear (Gaussian), binomial (logistic), and multinomial GLMs. It provides new functionalities to empower practical applications by using a cross validation framework that assesses the predictive performance and statistical significance of a family of elastic net models (as α is varied) and of the corresponding features that contribute to prediction. The user can select which quality metrics to use to quantify the concordance between predicted and observed values, with defaults provided for each GLM. Statistical significance for each model (as defined by α) is determined based on comparison to a set of null models generated by random permutations of the response; the same permutation-based approach is used to evaluate the significance of individual features. In the analysis of large and complex biological datasets, such as transcriptomic and proteomic data, eNetXplorer provides summary statistics, output tables, and visualizations to help assess which subset(s) of features have predictive value for a set of response measurements, and to what extent those subset(s) of features can be expanded or reduced via regularization. CONCLUSIONS: This package presents a framework and software for exploratory data analysis and visualization. By making regularized GLMs more accessible and interpretable, eNetXplorer guides the process to generate hypotheses based on features significantly associated with biological phenotypes of interest, e.g. to identify biomarkers for therapeutic responsiveness. eNetXplorer is also generally applicable to any research area that may benefit from predictive modeling and feature identification using regularized GLMs. The package is available under GPL-3 license at the CRAN repository, https://CRAN.R-project.org/package=eNetXplorer .


Asunto(s)
Biología Computacional/métodos , Modelos Lineales , Programas Informáticos , Perfilación de la Expresión Génica , Proteómica
13.
Cytometry A ; 95(9): 1019-1030, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31364278

RESUMEN

Mass cytometry is a powerful tool for high-dimensional single cell characterization. Since the introduction of the first commercial CyTOF mass cytometer by DVS Sciences in 2009, mass cytometry technology has matured and become more widely utilized, with sequential platform upgrades designed to address specific limitations and to expand the capabilities of the platform. Fluidigm's third-generation Helios mass cytometer introduced a number of upgrades over the previous CyTOF2. One of these new features is a modified narrow bore sample injector that generates smaller ion clouds, which is expected to improve sensitivity and throughput. However, following rigorous testing, we find that the narrow-bore sample injector may have unintended negative consequences on data quality and result in lower median and higher coefficients of variation in many antibody-associated signal intensities. We describe an alternative Helios acquisition protocol using a wider bore injector, which largely mitigates these data quality issues. We directly compare these two protocols in a multisite study of 10 Helios instruments across 7 institutions and show that the modified protocol improves data quality and reduces interinstrument variability. These findings highlight and address an important source of technical variability in mass cytometry experiments that is of particular relevance in the setting of multicenter studies. © 2019 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo/métodos , Análisis de la Célula Individual/instrumentación , Anticuerpos , Citometría de Flujo/instrumentación , Humanos , Inmunofenotipificación/normas , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Linfocitos/citología , Linfocitos/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual/métodos
14.
BMC Bioinformatics ; 19(1): 427, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445906

RESUMEN

BACKGROUND: Image-based high-throughput screening (HTS) reveals a high level of heterogeneity in single cells and multiple cellular states may be observed within a single population. Currently available high-dimensional analysis methods are successful in characterizing cellular heterogeneity, but suffer from the "curse of dimensionality" and non-standardized outputs. RESULTS: Here we introduce RefCell, a multi-dimensional analysis pipeline for image-based HTS that reproducibly captures cells with typical combinations of features in reference states and uses these "typical cells" as a reference for classification and weighting of metrics. RefCell quantitatively assesses heterogeneous deviations from typical behavior for each analyzed perturbation or sample. CONCLUSIONS: We apply RefCell to the analysis of data from a high-throughput imaging screen of a library of 320 ubiquitin-targeted siRNAs selected to gain insights into the mechanisms of premature aging (progeria). RefCell yields results comparable to a more complex clustering-based single-cell analysis method; both methods reveal more potential hits than a conventional analysis based on averages.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , ARN Interferente Pequeño/metabolismo , Humanos
15.
PLoS Comput Biol ; 9(9): e1003215, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039568

RESUMEN

Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of "supercell statistics", a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behçet's disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behçet's disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8(+) T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8(+) T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.


Asunto(s)
Diagnóstico , Inteligencia Artificial , Humanos
16.
PLoS One ; 19(5): e0302696, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753612

RESUMEN

Pathway enrichment analysis is a ubiquitous computational biology method to interpret a list of genes (typically derived from the association of large-scale omics data with phenotypes of interest) in terms of higher-level, predefined gene sets that share biological function, chromosomal location, or other common features. Among many tools developed so far, Gene Set Enrichment Analysis (GSEA) stands out as one of the pioneering and most widely used methods. Although originally developed for microarray data, GSEA is nowadays extensively utilized for RNA-seq data analysis. Here, we quantitatively assessed the performance of a variety of GSEA modalities and provide guidance in the practical use of GSEA in RNA-seq experiments. We leveraged harmonized RNA-seq datasets available from The Cancer Genome Atlas (TCGA) in combination with large, curated pathway collections from the Molecular Signatures Database to obtain cancer-type-specific target pathway lists across multiple cancer types. We carried out a detailed analysis of GSEA performance using both gene-set and phenotype permutations combined with four different choices for the Kolmogorov-Smirnov enrichment statistic. Based on our benchmarks, we conclude that the classic/unweighted gene-set permutation approach offered comparable or better sensitivity-vs-specificity tradeoffs across cancer types compared with other, more complex and computationally intensive permutation methods. Finally, we analyzed other large cohorts for thyroid cancer and hepatocellular carcinoma. We utilized a new consensus metric, the Enrichment Evidence Score (EES), which showed a remarkable agreement between pathways identified in TCGA and those from other sources, despite differences in cancer etiology. This finding suggests an EES-based strategy to identify a core set of pathways that may be complemented by an expanded set of pathways for downstream exploratory analysis. This work fills the existing gap in current guidelines and benchmarks for the use of GSEA with RNA-seq data and provides a framework to enable detailed benchmarking of other RNA-seq-based pathway analysis tools.


Asunto(s)
Benchmarking , RNA-Seq , Humanos , RNA-Seq/métodos , Biología Computacional/métodos , Neoplasias/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos
17.
Aging Cell ; 23(1): e13902, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37350292

RESUMEN

The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.


Asunto(s)
Envejecimiento , Metabolómica , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Transversales , Biomarcadores/metabolismo , Senescencia Celular
18.
Commun Biol ; 7(1): 383, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553628

RESUMEN

Hepatocellular carcinoma (HCC) is a molecularly heterogeneous solid malignancy, and its fitness may be shaped by how its tumor cells evolve. However, ability to monitor tumor cell evolution is hampered by the presence of numerous passenger mutations that do not provide any biological consequences. Here we develop a strategy to determine the tumor clonality of three independent HCC cohorts of 524 patients with diverse etiologies and race/ethnicity by utilizing somatic mutations in cancer driver genes. We identify two main types of tumor evolution, i.e., linear, and non-linear models where non-linear type could be further divided into classes, which we call shallow branching and deep branching. We find that linear evolving HCC is less aggressive than other types. GTF2IRD2B mutations are enriched in HCC with linear evolution, while TP53 mutations are the most frequent genetic alterations in HCC with non-linear models. Furthermore, we observe significant B cell enrichment in linear trees compared to non-linear trees suggesting the need for further research to uncover potential variations in immune cell types within genomically determined phylogeny types. These results hint at the possibility that tumor cells and their microenvironment may collectively influence the tumor evolution process.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Filogenia , Oncogenes , Mutación , Microambiente Tumoral/genética
19.
Exp Gerontol ; 178: 112230, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286061

RESUMEN

Sarcopenia is one of the primary risk factors for various adverse health events in later life. However, its pathophysiology in the very old population remains unclear. Hence, this study aimed to examine whether plasma free amino acids (PFAAs) correlate with major sarcopenic phenotypes (i.e., muscle mass, muscle strength, and physical performance) in community-dwelling adults aged 85-89 years living in Japan. Cross-sectional data from the Kawasaki Aging Well-being Project were used. We included 133 adults aged 85-89 years. In this study, fasting blood was collected to measure 20 plasma PFAAs. Measures for the three major sarcopenic phenotypes included appendicular lean mass assessed by multifrequency bioimpedance, isometric handgrip strength, and gait speed from a 5 m walk at a usual pace. Furthermore, we used phenotype-specific elastic net regression models adjusted for age centered at 85 years, sex, body mass index, education level, smoking status, and drinking habit to identify significant PFAAs for each sarcopenic phenotype. Higher histidine and lower alanine levels were associated with poor gait speed, but no PFAAs correlated with muscle strength or mass. In conclusion, PFAAs such as plasma histidine and alanine are novel blood biomarkers associated with physical performance in community-dwelling adults aged 85 years or older.


Asunto(s)
Sarcopenia , Humanos , Envejecimiento/fisiología , Alanina , Estudios Transversales , Fuerza de la Mano , Histidina , Vida Independiente , Octogenarios , Fenotipo , Anciano de 80 o más Años
20.
Nutrients ; 15(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36771486

RESUMEN

Measures of cardiovascular health (CVH) assessed by a combination of behavioral and biological factors has shown protective associations with all-cause mortality. The mechanisms underlying these associations have not been fully elucidated. In this study, we characterized the plasma proteomics profile of CVH and tested whether specific proteins mediated the associations between CVH and all-cause mortality in participants of the InCHIANTI study. Of the 1301 proteins tested, 92 proteins were associated with CVH (22 positively, 70 negatively). Proteins most strongly associated with CVH included leptin (LEP), fatty acid binding protein 3 (FABP3), Angiopoietin-2 (ANGPT2), and growth-differential factor 15 (GDF15). Of the 92 CVH-associated proteins, 33 proteins significantly mediated the associations between CVH and all-cause mortality, with percent mediation ranging from 5 to 30%. The most significant mediating proteins were GDF15 and insulin-like growth factor 2 (IGFBP2). Proteins associated with better CVH were enriched for proteins that reflect the suppression of the complement coagulation and GH/IGF pathways.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Mortalidad , Humanos , Estado de Salud , Proteómica , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA