Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36610399

RESUMEN

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Asunto(s)
Envejecimiento , Retrovirus Endógenos , Anciano , Animales , Humanos , Ratones , Envejecimiento/genética , Envejecimiento/patología , Senescencia Celular , Retrovirus Endógenos/genética , Primates
2.
Nature ; 611(7936): 467-472, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36224383

RESUMEN

Colossal magnetoresistance (CMR) is an extraordinary enhancement of the electrical conductivity in the presence of a magnetic field. It is conventionally associated with a field-induced spin polarization that drastically reduces spin scattering and electric resistance. Ferrimagnetic Mn3Si2Te6 is an intriguing exception to this rule: it exhibits a seven-order-of-magnitude reduction in ab plane resistivity that occurs only when a magnetic polarization is avoided1,2. Here, we report an exotic quantum state that is driven by ab plane chiral orbital currents (COC) flowing along edges of MnTe6 octahedra. The c axis orbital moments of ab plane COC couple to the ferrimagnetic Mn spins to drastically increase the ab plane conductivity (CMR) when an external magnetic field is aligned along the magnetic hard c axis. Consequently, COC-driven CMR is highly susceptible to small direct currents exceeding a critical threshold, and can induce a time-dependent, bistable switching that mimics a first-order 'melting transition' that is a hallmark of the COC state. The demonstrated current-control of COC-enabled CMR offers a new paradigm for quantum technologies.

3.
Am J Physiol Cell Physiol ; 326(2): C400-C413, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105755

RESUMEN

Kidney fibrosis is a prominent pathological feature of hypertensive kidney diseases (HKD). Recent studies have highlighted the role of ubiquitinating/deubiquitinating protein modification in kidney pathophysiology. Ovarian tumor domain-containing protein 6 A (OTUD6A) is a deubiquitinating enzyme involved in tumor progression. However, its role in kidney pathophysiology remains elusive. We aimed to investigate the role and underlying mechanism of OTUD6A during kidney fibrosis in HKD. The results revealed higher OTUD6A expression in kidney tissues of nephropathy patients and mice with chronic angiotensin II (Ang II) administration than that from the control ones. OTUD6A was mainly located in tubular epithelial cells. Moreover, OTUD6A deficiency significantly protected mice against Ang II-induced kidney dysfunction and fibrosis. Also, knocking OTUD6A down suppressed Ang II-induced fibrosis in cultured tubular epithelial cells, whereas overexpression of OTUD6A enhanced fibrogenic responses. Mechanistically, OTUD6A bounded to signal transducer and activator of transcription 3 (STAT3) and removed K63-linked-ubiquitin chains to promote STAT3 phosphorylation at tyrosine 705 position and nuclear translocation, which then induced profibrotic gene transcription in epithelial cells. These studies identified STAT3 as a direct substrate of OTUD6A and highlighted the pivotal role of OTUD6A in Ang II-induced kidney injury, indicating OTUD6A as a potential therapeutic target for HKD.NEW & NOTEWORTHY Ovarian tumor domain-containing protein 6 A (OTUD6A) knockout mice are protected against angiotensin II-induced kidney dysfunction and fibrosis. OTUD6A promotes pathological kidney remodeling and dysfunction by deubiquitinating signal transducer and activator of transcription 3 (STAT3). OTUD6A binds to and removes K63-linked-ubiquitin chains of STAT3 to promote its phosphorylation and activation, and subsequently enhances kidney fibrosis.


Asunto(s)
Hipertensión Renal , Nefritis , Neoplasias Ováricas , Humanos , Ratones , Animales , Femenino , Angiotensina II/farmacología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Riñón/metabolismo , Hipertensión Renal/metabolismo , Hipertensión Renal/patología , Células Epiteliales/metabolismo , Fibrosis , Neoplasias Ováricas/metabolismo , Ubiquitinas/metabolismo , Ratones Endogámicos C57BL
4.
Curr Issues Mol Biol ; 46(2): 1556-1566, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38392218

RESUMEN

The virulence of Mycobacterium tuberculosis (M. tuberculosis) is related to many factors, including intracellular survival, cell wall permeability, and cell envelope proteins. However, the biological function of the M. tuberculosis membrane protein Rv1476 remains unclear. To investigate the potential role played by Rv1476, we constructed an Rv1476 overexpression strain and found that overexpression of Rv1476 enhanced the intracellular survival of M. tuberculosis, while having no impact on the growth rate in vitro. Stress experiments demonstrated that the Rv1476 overexpression strain displayed increased susceptibility to different stresses compared to the wild-type strain. Transcriptome analysis showed that Rv1476 overexpression causes changes in the transcriptome of THP-1 cells, and differential genes are mainly enriched in cell proliferation, fatty acid degradation, cytokine-cytokine receptor interaction, and immune response pathways. Rv1476 overexpression inhibited the expression of some anti-tuberculosis-related genes, such as CCL1, IL15, IL16, ISG15, GBP5, IL23, ATG2A, IFNß, and CSF3. Altogether, we conclude that Rv1476 may play a critical role for M. tuberculosis in macrophage survival.

5.
PLoS Pathog ; 18(10): e1010820, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215225

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry worldwide. To investigate the role of miRNAs in the infection and susceptibility of PRRS virus (PRRSV), twenty-four miRNA libraries were constructed and sequenced from PRRSV-infected and mock-infected Porcine alveolar macrophages (PAMs) of Meishan, Landrace, Pietrain and Qingping pigs at 9 hours post infection (hpi), 36 hpi, and 60 hpi. The let-7 family miRNAs were significantly differentially expressed between PRRSV-infected and mock-infected PAMs from 4 pig breeds. The let-7 family miRNAs could significantly inhibit PRRSV-2 replication by directly targeting the 3'UTR of the PRRSV-2 genome and porcine IL6, which plays an important role in PRRSV replication and lung injury. NEAT1 acts as a competing endogenous lncRNA (ceRNA) to upregulate IL6 by attaching let-7 in PAMs. EMSA and ChIP results confirmed that ARID3A could bind to the promoter region of pri-let-7a/let-7f/let-7d gene cluster and inhibit the expression of the let-7 family. Moreover, the NF-κB signaling pathway inhibits the expression of the let-7 family by affecting the nuclear import of ARID3A. The pEGFP-N1-let-7 significantly reduced viral infections and pathological changes in PRRSV-infected piglets. Taken together, NEAT1/ARID3A/let-7/IL6 play significant roles in PRRSV-2 infection and may be promising therapeutic targets for PRRS.


Asunto(s)
MicroARNs , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Largo no Codificante , Regiones no Traducidas 3' , Animales , Proteínas de Unión al ADN/genética , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Porcinos , Factores de Transcripción/genética , Replicación Viral
6.
Phys Rev Lett ; 132(22): 226503, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877957

RESUMEN

We present experimental evidence that a heavy Fermi surface consisting of itinerant, charge-neutral spinons underpins both heavy-fermion-strange-metal (without f electrons) and quantum-spin-liquid states in the 4d-electron trimer lattice, Ba_{4}Nb_{1-x}Ru_{3+x}O_{12}(|x|<0.20). These two exotic states both exhibit an extraordinarily large entropy, a linear heat capacity extending into the milli-Kelvin regime, a linear thermal conductivity at low temperatures, and separation of charges and spins. Furthermore, the insulating spin liquid is a much better thermal conductor than the heavy-fermion-strange-metal that separately is observed to strongly violate the Wiedemann-Franz law. We propose that at the heart of this 4d system is a universal, heavy spinon Fermi surface that provides a unified framework for explaining the exotic phenomena observed throughout the entire series. The control of such exotic ground states provided by variable Nb concentration offers a new paradigm for studies of correlated quantum matter.

7.
J Nanobiotechnology ; 22(1): 334, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877463

RESUMEN

Due to the limitations of single-model tumor therapeutic strategies, multimodal combination therapy have become a more favorable option to enhance efficacy by compensating for its deficiencies. However, in nanomaterial-based multimodal therapeutics for tumors, exploiting synergistic interactions and cascade relationships of materials to achieve more effective treatments is still a great challenge. Based on this, we constructed a nanoplatform with a "triple-linkage" effect by cleverly integrating polydopamine (PDA), silver nanoparticles (AgNPs), and glucose oxidase (GOx) to realize enhanced photothermal therapy (PTT) and activatable metal ion therapy (MIT) for hepatocellular carcinoma (HCC) treatment. First, the non-radiative conversion of PDA under light conditions was enhanced by AgNPs, which directly enhanced the photothermal conversion efficiency of PDA. In addition, GOx reduced the synthesis of cellular heat shock proteins by interfering with cellular energy metabolism, thereby enhancing cellular sensitivity to PTT. On the other hand, H2O2, a by-product of GOx-catalyzed glucose, could be used as an activation source to activate non-toxic AgNPs to release cytotoxic Ag+, achieving activatable Ag+-mediated MIT. In conclusion, this nanosystem achieved efficient PTT and MIT for HCC by exploiting the cascade effect among PDA, AgNPs, and GOx, providing a novel idea for the design of multimodal tumor therapeutic systems with cascade regulation.


Asunto(s)
Carcinoma Hepatocelular , Glucosa Oxidasa , Indoles , Neoplasias Hepáticas , Nanopartículas del Metal , Terapia Fototérmica , Polímeros , Plata , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Plata/química , Plata/farmacología , Plata/uso terapéutico , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Humanos , Glucosa Oxidasa/metabolismo , Indoles/química , Indoles/farmacología , Indoles/uso terapéutico , Animales , Terapia Fototérmica/métodos , Ratones , Polímeros/química , Línea Celular Tumoral , Fototerapia/métodos , Ratones Endogámicos BALB C , Peróxido de Hidrógeno , Supervivencia Celular/efectos de los fármacos , Ratones Desnudos
8.
Ren Fail ; 46(1): 2336128, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38575340

RESUMEN

Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Animales , Riñón/patología , Adenina , Reproducibilidad de los Resultados , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/tratamiento farmacológico
9.
Nano Lett ; 23(10): 4176-4182, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37133858

RESUMEN

We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high-impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity (Ctotal > 17.6) interaction between the qubit ensemble and the resonator, we tune the charge-photon coupling and observe the collective microwave response changing from linear to nonlinear. Our results present the maximum number of DQDs coupled to a resonator and manifest a potential platform for scaling up qubits and studying collective quantum effects in semiconductor-superconductor hybrid cavity quantum electrodynamics systems.

10.
Nano Lett ; 23(9): 3810-3817, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098786

RESUMEN

Hole spin qubits based on germanium (Ge) have strong tunable spin-orbit interaction (SOI) and ultrafast qubit operation speed. Here we report that the Rabi frequency (fRabi) of a hole spin qubit in a Ge hut wire (HW) double quantum dot (DQD) is electrically tuned through the detuning energy (ϵ) and middle gate voltage (VM). fRabi gradually decreases with increasing ϵ; on the contrary, fRabi is positively correlated with VM. We attribute our results to the change of electric field on SOI and the contribution of the excited state in quantum dots to fRabi. We further demonstrate an ultrafast fRabi exceeding 1.2 GHz, which indicates the strong SOI in our device. The discovery of an ultrafast and electrically tunable fRabi in a hole spin qubit has potential applications in semiconductor quantum computing.

11.
Gastroenterol Hepatol ; 47(2): 158-169, 2024 Feb.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37150251

RESUMEN

BACKGROUND: Intrahepatic infiltration of neutrophils is a character of alcoholic hepatitis (AH) and neutrophil extracellular traps (NETs) are an important strategy for neutrophils to fix and kill invading microorganisms. The gut-liver axis has been thought to play a critical role in many liver diseases also including AH. However, whether NETs appear in AH and play role in AH is still unsure. METHODS: Serum samples from AH patients were collected and LPS and MPO-DNA were detected. WT, NE KO, and TLR4 KO mice were used to build the AH model, and the intestinal bacteria were eliminated at the same time and LPS was given. Then the formation of NETs and AH-related markers were detected. RESULTS: The serum MPO-DNA and LPS concentration was increased in AH patients and a correlation was revealed between these two indexes. More intrahepatic NETs formed in AH mice. NETs formation decreased with antibiotic intervention and restored with antibiotic intervention plus LPS supplement. While NETs formation failed to change with gut microbiome or combine LPS supplement in TLR4 KO mice. As we tested AH-related characters, liver injury, intrahepatic fat deposition, inflammation, and fibrosis alleviated with depletion of NE. These related marks were also attenuated with gut sterilization by antibiotics and recovered with a combined treatment with antibiotics plus LPS. But the AH-related markers did show a difference in TLR4 KO mice when they received the same treatment. CONCLUSION: Intestinal-derived LPS promotes NETs formation in AH through the TLR4 pathway and further accelerates the AH process by NETs.


Asunto(s)
Trampas Extracelulares , Hepatitis Alcohólica , Animales , Humanos , Ratones , Antibacterianos , ADN/metabolismo , Trampas Extracelulares/metabolismo , Lipopolisacáridos/metabolismo , Neutrófilos/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
12.
Anal Chem ; 95(26): 9940-9948, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37314081

RESUMEN

Untargeted mass spectrometry is a robust tool for biology, but it usually requires a large amount of time on data analysis, especially for system biology. A framework called Multiple-Chemical nebula (MCnebula) was developed herein to facilitate the LC-MS data analysis process by focusing on critical chemical classes and visualization in multiple dimensions. This framework consists of three vital steps as follows: (1) abundance-based classes (ABC) selection algorithm, (2) critical chemical classes to classify "features" (corresponding to compounds), and (3) visualization as multiple Child-Nebulae (network graph) with annotation, chemical classification, and structure. Notably, MCnebula can be used to explore the classification and structural characteristic of unknown compounds beyond the limit of the spectral library. Moreover, it is intuitive and convenient for pathway analysis and biomarker discovery because of its function of ABC selection and visualization. MCnebula was implemented in the R language. A series of tools in R packages were provided to facilitate downstream analysis in an MCnebula-featured way, including feature selection, homology tracing of top features, pathway enrichment analysis, heat map clustering analysis, spectral visualization analysis, chemical information query, and output analysis reports. The broad utility of MCnebula was illustrated by a human-derived serum data set for metabolomics analysis. The results indicated that "Acyl carnitines" were screened out by tracing structural classes of biomarkers, which was consistent with the reference. A plant-derived data set was investigated to achieve a rapid annotation and discovery of compounds in E. ulmoides.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos , Algoritmos , Análisis de Datos
13.
Phys Rev Lett ; 130(18): 186902, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37204876

RESUMEN

Upon intense femtosecond photoexcitation, a many-body system can undergo a phase transition through a nonequilibrium route, but understanding these pathways remains an outstanding challenge. Here, we use time-resolved second harmonic generation to investigate a photoinduced phase transition in Ca_{3}Ru_{2}O_{7} and show that mesoscale inhomogeneity profoundly influences the transition dynamics. We observe a marked slowing down of the characteristic time τ that quantifies the transition between two structures. τ evolves nonmonotonically as a function of photoexcitation fluence, rising from below 200 fs to ∼1.4 ps, then falling again to below 200 fs. To account for the observed behavior, we perform a bootstrap percolation simulation that demonstrates how local structural interactions govern the transition kinetics. Our work highlights the importance of percolating mesoscale inhomogeneity in the dynamics of photoinduced phase transitions and provides a model that may be useful for understanding such transitions more broadly.

14.
Phys Rev Lett ; 130(23): 233602, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354413

RESUMEN

We experimentally and theoretically study a driven hybrid circuit quantum electrodynamics (cQED) system beyond the dispersive coupling regime. Treating the cavity as part of the driven system, we develop a theory applicable to such strongly coupled and to multiqubit systems. The fringes measured for a single driven double quantum dot (DQD)-cavity setting and the enlarged splittings of the hybrid Floquet states in the presence of a second DQD are well reproduced with our model. This opens a path to study Floquet states of multiqubit systems with arbitrarily strong coupling and reveals a new perspective for understanding strongly driven hybrid systems.

15.
J Interv Cardiol ; 2023: 2438347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720628

RESUMEN

At present, there is a lack of indicators, which can accurately predict the post-percutaneous coronary intervention (post-PCI) vessel-oriented composite endpoint (VOCE). Recent studies showed that the post-PCI quantitative flow ratio (QFR) can predict post-PCI VOCE. PubMed, Embase, and Cochrane were searched from inception to March 27, 2022, and the cohort studies about that the post-PCI QFR predicts post-PCI VOCE were screened. Meta-analysis was performed, including 6 studies involving 4518 target vessels. The results of the studies included in this meta-analysis all showed that low post-PCI QFR was an independent risk factor for post-PCI VOCE after adjusting for other factors, HR (95% CI) ranging from 2.718 (1.347-5.486) to 6.53 (2.70-15.8). Our meta-analysis showed that the risk of post-PCI VOCE was significantly higher in the lower post-PCI QFR group than in the higher post-PCI QFR group (HR: 4.14, 95% CI: 3.00-5.70, P < 0.001, I2 = 27.9%). Post-PCI QFR has a good predictive value for post-PCI VOCE. Trial Registration. This trial is registered with CRD42022322001.


Asunto(s)
Intervención Coronaria Percutánea , Humanos , Factores de Riesgo
16.
Artículo en Inglés | MEDLINE | ID: mdl-38086068

RESUMEN

ABSTRACT: The high level of oxidative stress induced by angiotensin II (AngII) is the main pathophysiological process that promotes the proliferation and migration of vascular smooth muscle cells (VSMCs) and induces vascular remodeling. LncRNA Metastasis-related lung adenocarcinoma transcript 1 (MALAT1) has been determined to play an important role in the modulation of oxidative stress and the development of cardiovascular diseases. Nevertheless, the function and underlying mechanism of MALAT1 in restenosis induced by hypertensive angioplasty remain unclear. AngII increased the expression of MALAT1 in VSMCs. We found that anti-sense oligonucleotide lncRNA MALAT1 (ASO-MALAT1) could inhibit AngII induced reactive oxygen species (ROS) production and VSMCs proliferation and migration by inducing the expression of glutathione peroxidase 4 (GPX4), which can be reversed by siRNA-GPX4. And GPX4 overexpression can inhibit the proliferation and migration of VSMCs induced by AngII. In addition, we found that the process by which MALAT1 knockdown induces GPX4 expression involves nuclear factor erythrocyte 2 related factor 2 (Nrf2). Overexpression of Nrf2 can increase the expression of GPX4, and down-regulation of GPX4 by ML385 (Nrf2 inhibitor) blocked the protective effect of ASO-MALAT1 on AngII-induced proliferation and migration of VSMCs. Ferrostatin-1 (Fer-1, ip 5mg/kg per day for 2 weeks), a GPX4 agonist, significantly inhibited neointimal formation in spontaneously hypertensive rat (SHR) by the inhibition of oxidative stress. In conclusion, these data imply that ASO-MALAT1 suppresses the AngII-induced oxidative stress, proliferation and migration of VSMCs by activating Nrf2/GPX4 antioxidant signaling. GPX4 may be a potential target for the therapeutic intervention of hypertensive vascular restenosis.

17.
BMC Neurol ; 23(1): 405, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968640

RESUMEN

BACKGROUND: Many studies have shown that coronary angiography (CAG) and percutaneous coronary intervention (PCI) via distal radial access (DRA) are safe and effective. Safety and efficacy of neuroangiography and neurointerventions via DRA are unknown. PURPOSE: Search the literatures on neuroangiography and neurointerventions via DRA and conduct a systematic review and meta-analysis. METHODS: PubMed, Embase and Cochrane were searched from inception to November 10, 2022. After literature screening, data extraction and assessment of literature quality, random effects model was used for meta-analysis. RESULTS: A total of 236 literatures were retrieved, and 17 literatures including 1163 patients were finally included for meta-analysis.The pooled access success rate was 0.96 (95% confidence interval, 0.94-0.98), and the heterogeneity was obvious (I2 = 55.5%). The pooled access-related complications incidence rate was 0.03 (95% confidence interval, 0.02-0.05), and the heterogeneity was not obvious (I2 = 15.8%). CONCLUSION: Neuroangiography and neurointerventions via DRA may be safe and effective. DRA is an alternative access for neuroangiography and neurointerventions.


Asunto(s)
Intervención Coronaria Percutánea , Humanos , Arteria Radial/diagnóstico por imagen , Arteria Radial/cirugía , Angiografía Coronaria , Incidencia , Resultado del Tratamiento
18.
Clin Exp Hypertens ; 45(1): 2284658, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38010958

RESUMEN

Long non-coding RNAs (LncRNAs) have been found to play a regulatory role in the pathophysiology of vascular remodeling-associated illnesses through the lncRNA-microRNA (miRNA) regulation axis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is thought to be involved in proliferation, migration, apoptosis, and calcification of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the regulatory role of MALAT1 on vascular remodeling in hypertension. Our data indicate that the expression of MALAT1 is significantly upregulated in hypertensive aortic smooth muscle. Knockdown of MALAT1 inhibited the proliferation, migration, and phenotypic transition of VSMCs induced by Ang II. Bioinformatics analysis was used to predict the complementary binding of miR-145-5p to the 3'-untranslated region of MALAT1. Besides, the expressions of MALAT1 and miR-145-5p were negatively correlated, while luciferase reporter assays and RNA immunoprecipitation assay validated the interaction between miR-145-5p and MALAT1. The proliferation, migration and phenotypic transformation of VSMCs induced by overexpression of MALAT1 were reversed in the presence of miR-145-5p. Furthermore, we verified that miR-145-5p could directly target and bind to hexokinase 2 (HK2) mRNA, and that HK2 expression was negatively correlated with miR-145-5p in VSMCs. Knockdown of HK2 significantly inhibited the effects of overexpression of MALAT1 on Ang II-induced VSMCs proliferation, migration and phenotypic transformation. Taken together, the MALAT1/miR-145-5p/HK2 axis may play a critical regulatory role in the vascular remodeling of VSMCs in hypertension.


Asunto(s)
Hipertensión , MicroARNs , ARN Largo no Codificante , Apoptosis/genética , Proliferación Celular/genética , Hexoquinasa/metabolismo , Hipertensión/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , Remodelación Vascular/genética
19.
Proc Natl Acad Sci U S A ; 117(11): 5582-5587, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123110

RESUMEN

Vibrational modes in mechanical resonators provide a promising candidate to interface and manipulate classical and quantum information. The observation of coherent dynamics between distant mechanical resonators can be a key step toward scalable phonon-based applications. Here we report tunable coherent phonon dynamics with an architecture comprising three graphene mechanical resonators coupled in series, where all resonators can be manipulated by electrical signals on control gates. We demonstrate coherent Rabi oscillations between spatially separated resonators indirectly coupled via an intermediate resonator serving as a phonon cavity. The Rabi frequency fits well with the microwave burst power on the control gate. We also observe Ramsey interference, where the oscillation frequency corresponds to the indirect coupling strength between these resonators. Such coherent processes indicate that information encoded in vibrational modes can be transferred and stored between spatially separated resonators, which can open the venue of on-demand phonon-based information processing.

20.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139740

RESUMEN

Surface acoustic wave resonators are widely applied in electronics, communication, and other engineering fields. However, the spurious modes generally present in resonators can cause deterioration in device performance. Therefore, this paper proposes a hexagonal weighted structure to suppress them. With the construction of a finite element resonator model, the parameters of the interdigital transducer (IDT) and the area of the dummy finger weighting are determined. The spurious waves are confined within the dummy finger area, whereas the main mode is less affected by this structure. To verify the suppression effect of the simulation, resonators with conventional and hexagonal weighted structures are fabricated using the micro-electromechanical systems (MEMS) process. After the S-parameter test of the prepared resonators, the hexagonal weighted resonators achieve a high level of spurious mode suppression. Their properties are superior to those of the conventional structure, with a higher Q value (10,406), a higher minimum return loss (25.7 dB), and a lower ratio of peak sidelobe (19%). This work provides a feasible solution for the design of SAW resonators to suppress spurious modes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA