RESUMEN
INTRODUCTION: Insulin resistance is widely thought to be a critical feature in type 2 diabetes mellitus (T2DM), and there is significant evidence indicating a higher abundance of insulin receptors in the human cerebellum than cerebrum. However, the specific structural or functional changes in the cerebellum related to T2DM remain unclear, and the association between cerebellar alterations, insulin resistance, cognition, and emotion is yet to be determined. METHODS: We investigated neuropsychological performance, and structural and functional changes in specific cerebellar subregions in 43 T2DM patients with high insulin resistance (T2DM-highIR), 72 T2DM patients with low insulin resistance (T2DM-lowIR), and 50 controls. Furthermore, the correlation and stepwise multiple linear regression analysis were performed. RESULTS: Compared to the controls, T2DM exhibited lower cognitive scores and higher depressive/anxious scores. Furthermore, T2DM-highIR patients showed reduced gray matter volume (GMV) in the right cerebellar lobules VIIb, Crus I/II, and T2DM showed reduced GMV in left lobules I-IV compared to controls. Additionally, functional connectivity decrease was observed between the right lobules I-V and orbital part of the superior frontal gyrus in T2DM-highIR compared to both T2DM-lowIR and controls. Notably, there were negative correlations between the GMV of the lobules VIIb, Crus I/II, and updated homeostatic model assessment of insulin resistance, and positive correlation with executive/visuospatial performance in T2DM patients. CONCLUSIONS: These results suggest that the cerebellar lobules VIIb, Crus I/II, represent vulnerable brain regions in the context of insulin resistance. Overall, this study offers new insights into the neuropathophysiological mechanisms of brain impairment in patients with T2DM.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Resistencia a la Insulina , Humanos , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cerebelo/diagnóstico por imagenRESUMEN
BACKGROUND: The neuropathophysiological mechanisms of brain damage underlying hypothyroidism remain unclear. Fractional amplitude of low-frequency fluctuations (fALFF) has been established as a reliable indicator for investigation of abnormal spontaneous brain activity that occurs at specific frequencies in different types of mental disorder. However, the changes of fALFF in specific frequency bands in hypothyroidism have not yet been investigated. METHODS: Fifty-three hypothyroid patients and 39 healthy controls (HCs) underwent thyroid-related hormone levels tests, neuropsychological assessment, and magnetic resonance imaging (MRI) scans. The fALFF in the standard band (0.01-0.1 Hz), slow-4 (0.027-0.073 Hz), and slow-5 bands (0.01-0.027 Hz) were analyzed. An analysis of Pearson correlation was conducted between fALFF, thyroid-related hormone levels, and neuropsychological scores in hypothyroid patients. RESULTS: Compared to HCs, within the routine band, hypothyroidism group showed significantly decreased fALFF in left lingual gyrus, middle temporal gyrus (MTG), precentral gyrus, calcarine cortex, and right inferior occipital gyrus; within the slow-5 band, the hypothyroidism group exhibited decreased fALFF in left lingual gyrus, MTG, superior temporal gyrus, postcentral gyrus, and paracentral lobule, and increased fALFF in supplementary motor area (SMA) and right middle frontal gyrus; additionally, fALFF in the left lingual gyrus within the routine and slow-5 bands were negatively correlated with the level of thyroid stimulating hormone. CONCLUSIONS: In this study, the slow-5 frequency band exhibits better sensitivity than the standard band in detecting fALFF values. A decrease of fALFF values in the lingual gyrus and MTG was observed in both the standard and slow-5 bands and might present potential neuroimaging biomarkers for hypothyroidism. CLINICAL TRIAL REGISTRATION: No: ChiCTR2000028966. Registered 9 January, 2020, https://www.chictr.org.cn.
Asunto(s)
Hipotiroidismo , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Ondas Encefálicas/fisiología , Hipotiroidismo/fisiopatología , Hipotiroidismo/diagnóstico por imagen , Estudios de Casos y ControlesRESUMEN
INTRODUCTION: Hypothyroidism leads to impaired white matter (WM) integrity, associated with cognitive/neuropsychiatric dysfunction. However, the specific segmental abnormalities of the fibers remain unexplored. Therefore, this study aimed to investigate whether the damage of the WM is limited to a specific segment or the entire bundle via diffusion metrics using automated fiber quantification. METHODS: A cross-sectional study was conducted on 31 hypothyroid patients and 28 healthy controls. Thyroid-related hormone levels, cognitive/neuropsychiatric function, and diffusion tensor image data were collected and analyzed. Correlation and random forest analyses were also performed. RESULTS: The mean fractional anisotropy (FA) values were reduced at the fiber tract level. The mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values were increased in several fiber tracts, i.e., cingulum cingulate (CC), anterior forceps of corpus callosum (CCF_A). Significant correlations were found between cognitive function and diffusion indicators such as the FA value of the left corticospinal tract and arcuate fasciculus (AF), the MD value of left CC, the RD value of left AF, the AD value of left CC, and CCF_A. The widespread microstructure disruption was spread on multiple specific segments of different tracts at the point-wise level. The random forest revealed that the accuracy of recognizing hypothyroid patients was 82.5%, with the anterior component of CCF_A having the most significant contribution. CONCLUSION: WM microstructural integrity impairments were found in multi-segments of the multiple fiber bundles in hypothyroidism, which might be a potential mechanism of the underlying neurocognitive decline and cerebral impairment. The CCF_A might serve as a neuro biomarker for early warning of cerebral impairment in hypothyroidism.
Asunto(s)
Disfunción Cognitiva , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Estudios Transversales , Encéfalo/diagnóstico por imagenRESUMEN
INTRODUCTION: Type 2 diabetes mellitus (T2DM) patients with depression have a higher risk of complications and mortality than T2DM without depression. However, the exact neuropathophysiological mechanism remains unclear. Consequently, the current study aimed to investigate the alteration of cortical and subcortical spontaneous neural activity in T2DM patients with and without depression. METHODS: The demographic data, clinical variables, neuropsychological tests, and functional and anatomical magnetic resonance imaging of depressed T2DM (n = 47) of non-depressed T2DM (n = 59) and healthy controls (n = 41) were collected and evaluated. The correlation analysis, stepwise multiple linear regression, and receiver operating characteristic curve were performed for further analysis. RESULTS: Abnormal neural activities in the bilateral posterior cingulate cortex (PCC) and hippocampus were observed in depressed and non-depressed T2DM and the right putamen of the depressed T2DM. Interestingly, the subcortical degree centrality (DC) of the right hippocampus and putamen were higher in depressed than non-depressed T2DM. Furthermore, the cortical amplitude of low-frequency fluctuation (ALFF) in PCC, subcortical DC in the putamen of depressed T2DM, and hippocampus of non-depressed T2DM was correlated with cognitive scores. In contrast, the cortical fractional ALFF in PCC of non-depressed T2DM was correlated with depression scores. CONCLUSIONS: The abnormalities of spontaneous cortical activity in PCC and subcortical activity in the hippocampus might represent the neurobiological feature of cerebral dysfunction in T2DM. Notably, the altered subcortical activity in the right putamen might mainly associate with negative emotion in T2DM, which could be a promising biomarker for recognizing early cerebral dysfunction in depressed T2DM. This study provided a novel insight into the neuropathophysiological mechanism of brain dysfunction in T2DM with and without depression.
Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Depresión/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Hipocampo , Imagen por Resonancia Magnética/métodos , Encéfalo/patologíaRESUMEN
This study aimed to assess the diagnostic efficacy of left ventricular synchrony (LVS) for detecting coronary artery disease (CAD). We explored whether the LVS index derived from phase analysis of D-SPECT provides superior diagnostic value compared to conventional perfusion analysis in identifying obstructive CAD. Patients with suspected or confirmed CAD underwent drug-stress/rest gated D-SPECT myocardial perfusion imaging (MPI) and coronary angiography (CAG). A 50% stenosis was set as the threshold for obstructive CAD. 110 participants were enrolled in this analysis. There were significant differences in phase standard deviation (PSD), phase histogram bandwidth (PHB) and entropy among the four groups. Patients without cardiac disease and those with mild-moderate stenosis exhibited no noticeable contraction asynchrony. However, LVS indices demonstrated a gradual increase with the progression of coronary stenosis when compared to NC (P < 0.001). Obstructive CAD was identified in 43 out of 110 participants (39%). Optimal cutoff values for diagnosing obstructive CAD during stress were determined as 7.6° for PSD, 24° for PHB, and 37% for entropy, respectively. Notably, PSD, PHB, and entropy indices exhibited higher sensitivity compared to MPI. The integration of the stress-induced LVS indices into routine MPI analysis resulted in a significantly greater area under the curve (AUC), leading to improved diagnostic performance and enhanced differential capacity. Stress-induced LVS indices increase with the severity of coronary artery stenosis by D-SPECT phase analysis. Further, the indices-derived phase analysis exhibits superior sensitivity and discriminatory ability compared to MPI in detecting obstructive CAD.
Asunto(s)
Angiografía Coronaria , Estenosis Coronaria , Imagen de Perfusión Miocárdica , Valor Predictivo de las Pruebas , Índice de Severidad de la Enfermedad , Función Ventricular Izquierda , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estenosis Coronaria/fisiopatología , Estenosis Coronaria/diagnóstico por imagen , Imagen de Perfusión Miocárdica/métodos , Anciano , Reproducibilidad de los Resultados , Prohibitinas , Tomografía Computarizada por Emisión de Fotón Único Sincronizada Cardíaca , Contracción Miocárdica , Tomografía Computarizada de Emisión de Fotón ÚnicoRESUMEN
CONTEXT: Hypothyroidism is often associated with cognitive and emotional dysregulation; however, the underlying neuropathological mechanisms remain elusive. OBJECTIVE: The study aimed to characterize abnormal alterations in hippocampal subfield volumes and functional connectivity (FC) in patients with subclinical hypothyroidism (SCH) and overt hypothyroidism (OH). METHODS: This cross-sectional observational study comprised 47 and 40 patients with newly diagnosed adult-onset primary SCH and OH, respectively, and 53 well-matched healthy controls (HCs). The demographics, clinical variables, and neuropsychological scale scores were collected. Next, the hippocampal subfield volumes and seed-based FC were compared between the groups. Finally, correlation analyses were performed. RESULTS: SCH and OH exhibited significant alterations in cognitive and emotional scale scores. Specifically, the volumes of the right granule cell molecular layer of the dentate gyrus (GC-ML-DG) head, cornu ammonis (CA) 4, and CA3 head were reduced in the SCH and OH groups. Moreover, the volumes of the right molecular layer head, CA1 body, left GC-ML-DG head, and CA4 head were lower in SCH. In addition, the hippocampal subfield volumes decreased more significantly in SCH than OH. The seed-based FC decreased in SCH but increased in OH compared with HCs. Correlation analyses revealed thyroid hormone was negatively correlated with FC values in hypothyroidism. CONCLUSION: Patients with SCH and OH might be at risk of cognitive decline, anxiety, or depression, and exhibited alterations in volume and FC in specific hippocampal subfields. Furthermore, the reduction in volume was more pronounced in SCH. This study provides novel insights into the neuropathological mechanisms of brain impairment in hypothyroidism.
Asunto(s)
Hipocampo , Hipotiroidismo , Imagen por Resonancia Magnética , Humanos , Hipotiroidismo/patología , Hipotiroidismo/fisiopatología , Hipotiroidismo/complicaciones , Masculino , Femenino , Estudios Transversales , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Pruebas NeuropsicológicasRESUMEN
BACKGROUND: Magnetic resonance imaging (MRI) brain abnormalities have been reported in the corpus callosum (CC) of patients with adult-onset hypothyroidism. However, no study has directly compared CC-specific morphological or functional alterations among subclinical hypothyroidism (SCH), overt hypothyroidism (OH), and healthy controls (HC). Moreover, the association of CC alterations with cognition and emotion is not well understood. METHODS: Demographic data, clinical variables, neuropsychological scores, and MRI data of 152 participants (60 SCH, 37 OH, and 55 HC) were collected. This study investigated the clinical performance, morphological and functional changes of CC subregions across three groups. Moreover, a correlation analysis was performed to explore potential relationships between these factors. RESULTS: Compared to HC, SCH and OH groups exhibited lower cognitive scores and higher depressive/anxious scores. Notably, rostrum and rostral body volume of CC was larger in the SCH group. Functional connectivity between rostral body, anterior midbody and the right precentral and dorsolateral superior frontal gyrus were increased in the SCH group. In contrast, the SCH and OH groups exhibited a decline in functional connectivity between splenium and the right angular gyrus. Within the SCH group, rostrum volume demonstrated a negative correlation with Montreal Cognitive Assessment and visuospatial/executive scores, while displaying a positive correlation with 24-item Hamilton Depression Rating Scale scores. In the OH group, rostral body volume exhibited a negative correlation with serum thyroid stimulating hormone levels, while a positive correlation with serum total thyroxine and free thyroxine levels. CONCLUSIONS: This study suggests that patients with different stages of adult-onset hypothyroidism may exhibit different patterns of CC abnormalities. These findings offer new insights into the neuropathophysiological mechanisms in hypothyroidism.
Asunto(s)
Cuerpo Calloso , Hipotiroidismo , Imagen por Resonancia Magnética , Humanos , Masculino , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/fisiopatología , Cuerpo Calloso/patología , Femenino , Hipotiroidismo/fisiopatología , Hipotiroidismo/complicaciones , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Pruebas Neuropsicológicas , Cognición/fisiologíaRESUMEN
BACKGROUND: It has been demonstrated that widespread structural and functional brain alterations influence the development of cognitive impairment in patients with obstructive sleep apnea (OSA). However, the literature has limited evidence regarding the neuropathophysiological mechanisms behind these impairments. This research aimed to investigate brain morphologic and functional connectivity (FC) abnormalities related to neurocognitive function in OSA. METHODS: Fifty treatment-naïve males, newly diagnosed patients with severe OSA, and 50 well-matched healthy controls (HCs) were enrolled prospectively. All subjects underwent an MRI scan, cognitive psychological and sleep scale assessment. The differences of brain morphological and seed-based FC between the two groups were compared. The correlation analysis and receiver operating characteristic curve were performed for further analysis. RESULTS: Compared with HCs, the right brainstem, left dorsal-lateral superior frontal gyrus (SFGdor), and superior temporal gyrus (STG) exhibited atrophy in the OSA group. In addition, FC between the left SFGdor and the right postcentral gyrus (PoCG) was increased, which was positively correlated with disease duration (r = 0.312, FDR-corrected P = 0.027). The Jacobian values of the brainstem were negatively correlated with MoCA and recall scores (r = -0.449, FDR-corrected P = 0.0025; r = -0.416, FDR-corrected P = 0.005). Furthermore, the Jacobian values of the left SFGdor demonstrated a relatively high diagnostic performance (sensitivity: 86%, specificity: 56%, AUC: 0.740, 95% CI: 0.643-0.836, P < 0.0001). CONCLUSIONS: Structural atrophy in brainstem and frontotemporal lobe and altered FC may be the neurobiological hallmark of brain impairment in OSA. Notably, brainstem atrophy has been associated with cognitive impairment, which may provide new insights into understanding the neuropathophysiological mechanisms of cognitive impairment in OSA patients.
RESUMEN
Background: Untreated adult hypothyroidism may be associated with cognitive and emotional impairment, but the precise underlying neuropathological mechanism is unknown. We investigated the brain morphological and functional abnormalities associated with cognition and emotion in hypothyroidism. Methods: This is a cross-sectional observational study. Forty-four newly diagnosed adult hypothyroid patients and 54 well-matched healthy controls (HCs) were enrolled. All participants underwent three-dimensional T1-weighted imaging and resting-state functional magnetic resonance imaging (MRI). Morphological and seed-based functional connectivity (FC) analyses were performed to compare the intergroup differences. Neuropsychological tests, including the Montreal Cognitive Assessment (MoCA) Scale, 24-item Hamilton Depression Rating Scale (HAMD-24), and Hamilton Anxiety Rating Scale (HAMA) were administered. Thyroid function test and blood lipid levels were measured. Correlations were computed between neuropsychological and biochemical measures with neuroimaging indices. Sensitive morphological or functional neuroimaging indicators were identified using receiver operating characteristic (ROC) analysis. Results: Compared with HCs, hypothyroid patients demonstrated lower total and subdomain scores on the MoCA and higher HAMD-24 and HAMA scores. Morphological analysis revealed the hypothyroid patients had significantly reduced gray matter (GM) volumes in the right superior frontal gyrus, superior temporal gyrus, left dorsolateral superior frontal gyrus, middle frontal gyrus, and supplementary motor area as well as significantly increased GM volumes in the bilateral cerebellar Crus I and left precentral gyrus. Furthermore, seed-based FC analysis of hypothyroid patients showed increased FC between the right cerebellar Crus I and left precentral gyrus, triangular part of the inferior frontal gyrus, and angular gyrus of the inferior parietal lobe. The language scores of the MoCA were positively correlated with Jacobian values of the left supplementary motor area (r = 0.391, p = 0.046) and precentral gyrus (r = 0.401, p = 0.039). ROC analysis revealed FC value between cerebellar Crus I and angular gyrus could differentiate groups with relatively high accuracy (sensitivity: 75%, specificity: 77.8%, area under the curve: 0.794 [CI 0.701-0.888], p < 0.001). Conclusions: Untreated adult-onset hypothyroidism may be associated with impaired cognition and anxiety or depression. GM morphological alterations and FC of the cerebellum with subregions of the frontal and parietal lobes may represent key neuropathological mechanisms underlying the cognitive deterioration and mood dysregulation observed in hypothyroid adults. Clinical Trial Registration Number: chiCTR2000028966.
Asunto(s)
Sustancia Gris , Hipotiroidismo , Humanos , Adulto , Sustancia Gris/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Hipotiroidismo/diagnóstico por imagenRESUMEN
Spinal hydatidosis, which affects the thoracic vertebrae, is not only an extremely rare occurrence, but is also characterized by a high recurrence rate. Here, we reported a case of 67-years-old man who presented with recurrent spinal hydatid disease. The condition was originally misdiagnosed as Schwannoma via medical imaging, but eventually confirmed by postoperative pathology. He was subjected to surgery, combined with adjuvant drug therapy. Unfortunately, he experienced recurrent spinal hydatid disease and had to undergo hydatid cyst excision in over 5 years.