Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nano Lett ; 19(5): 3256-3266, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965009

RESUMEN

Breast cancer develops from local tissue but is characterized by a distinct metastatic pattern involving regional lymph nodes and distant organs, which is the primary cause of high mortality in breast cancer patients. Herein, optimal docking nanoparticles (NPs) composed of a laurate-functionalized Pt(IV) prodrug (Pt(lau)), human serum albumin (HSA), and lecithin were predicted by computational modeling, prepared by nanoprecipitation, and validated by fluorescence spectroscopy. As macrophages have been reported to be preferentially recruited by breast cancer, Rex, the exosome spontaneously secreted by murine RAW 264.7 cells, was isolated to encapsulate the NPs. This high-performance delivery system, called NPs/Rex, possessed the desired physicochemical properties, enhanced colloidal stability, and redox-triggered release profile. Investigations of cytodynamics proved that NPs/Rex was internalized through multiple pathways, avoided entrapment by bilayers, and successfully platinized nucleic acids after bioreduction in the cytosol. Intracellular activation of Pt(lau) was confirmed by observing the characteristic effects of cisplatin on cell proliferation and the cell cycle following treatment with NPs/Rex. During in vivo application, the bioinspired Rex coating endowed docking NPs with prolonged blood circulation, smart organ tropism, and enhanced biocompatibility, as well as robust platinum (Pt) chemotherapy for breast cancer cells in orthotopic tumors of fat pads and metastatic nodules of lungs. Therefore, this favorable nanoplatform might provide valuable insight into the derivatization and development of Pt anticancer drugs used currently in the clinic.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/tratamiento farmacológico , Profármacos/farmacología , Animales , Neoplasias de la Mama/patología , Exosomas/química , Femenino , Humanos , Lauratos/química , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Nanopartículas/química , Platino (Metal)/química , Profármacos/química , Células RAW 264.7/química , Albúmina Sérica Humana/química , Albúmina Sérica Humana/farmacología
2.
Lab Chip ; 24(2): 292-304, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38086670

RESUMEN

Leukocyte recruitment from blood to tissue is a process that occurs at the level of capillary vessels during both physiological and pathological conditions. This process is also relevant for evaluating novel adoptive cell therapies, in which the trafficking of therapeutic cells such as chimeric antigen receptor (CAR)-T cells throughout the capillaries of solid tumors is important. Local variations in blood flow, mural cell concentration, and tissue stiffness contribute to the regulation of capillary vascular permeability and leukocyte trafficking throughout the capillary microvasculature. We developed a platform to mimic a biologically functional human arteriole-venule microcirculation system consisting of pericytes (PCs) and arterial and venous primary endothelial cells (ECs) embedded within a hydrogel, which self-assembles into a perfusable, heterogeneous microvasculature. Our device shows a preferential association of PCs with arterial ECs that drives the flow-dependent formation of microvasculature networks. We show that PCs stimulate basement membrane matrix synthesis, which affects both vessel diameter and permeability in a manner correlating with the ratio of ECs to PCs. Moreover, we demonstrate that hydrogel concentration can affect capillary morphology but has no observed effect on vascular permeability. The biological function of our capillary network was demonstrated using an inflammation model, where significantly higher expression of cytokines, chemokines, and adhesion molecules was observed after tumor necrosis factor-alpha (TNF-α) treatment. Accordingly, T cell adherence and transendothelial migration were significantly increased in the immune-activated state. Taken together, our platform allows the generation of a perfusable microvasculature that recapitulates the structure and function of an in vivo capillary bed that can be used as a model for developing potential immunotherapies.


Asunto(s)
Células Endoteliales , Microvasos , Humanos , Microvasos/metabolismo , Capilares/fisiología , Leucocitos , Hidrogeles/metabolismo
3.
ACS Nano ; 17(15): 15165-15179, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490051

RESUMEN

Oxidative stress accompanying the reactive oxygen species (ROS) burst governs immunocyte infiltration, activation, and differentiation in tumor microenvironments and thus can elicit robust antitumor immunity. Here, we identify a photoactive metal-organic coordination polymer (MOCP), composed of an organometallic core formed by cytotoxic mitoxantrone (MTX) acylates and photosensitive Ru(BIQ)-HDBB [BIQ = 2,2'-biquinoline, HDBB = 4,4'-di(4-benzoato)-2,2'-bipyridine] linked by Fe(II) ions via coordinate covalent bonds and an amphipathic shell encapsulating cholesterol-modified siRNA against GPX4 (siGPX4) via hydrophobic force, to precisely amplify intracellular oxidative storm. MOCPs simultaneously encapsulated MTX, Ru, and siGPX4 with efficiencies >98% and loaded Fe with efficiencies of ∼0.49%. With longer blood circulation and higher tumor accumulation, MOCPs with a 670 nm LED irradiation generate abundant ROS to induce biomembrane dysfunction and subsequently contribute to ferroptotic and immunogenic cell death, which drive tumor-associated antigen-specific immunity. MTX analogs contributed to Type I immunogenic cell death (ICD), while oxidative storm served as a damager for endo/lysosomal escape, an initiator for ferroptosis, and an inducer for type II ICD. Moreover, the blockade of CD73 that reduces extoATP catabolism unleashes immunosuppression, finally enhancing antitumor immune stimulation of MOCPs to promote orthotopic mammary cancer regression and prevent postoperative advanced cancer from recurrence and metastasis. MOCPs by exposing sufficient antigenicity thus provide a platform to synergize immune checkpoint inhibitors for the treatment of immunologically cold tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Estrés Oxidativo , Metales , Línea Celular Tumoral , Microambiente Tumoral
4.
Nat Biomed Eng ; 6(11): 1236-1247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35739419

RESUMEN

Environmental enteric dysfunction (EED)-a chronic inflammatory condition of the intestine-is characterized by villus blunting, compromised intestinal barrier function and reduced nutrient absorption. Here we show that essential genotypic and phenotypic features of EED-associated intestinal injury can be reconstituted in a human intestine-on-a-chip lined by organoid-derived intestinal epithelial cells from patients with EED and cultured in nutrient-deficient medium lacking niacinamide and tryptophan. Exposure of the organ chip to such nutritional deficiencies resulted in congruent changes in six of the top ten upregulated genes that were comparable to changes seen in samples from patients with EED. Chips lined with healthy epithelium or with EED epithelium exposed to nutritional deficiencies resulted in severe villus blunting and barrier dysfunction, and in the impairment of fatty acid uptake and amino acid transport; and the chips with EED epithelium exhibited heightened secretion of inflammatory cytokines. The organ-chip model of EED-associated intestinal injury may facilitate the analysis of the molecular, genetic and nutritional bases of the disease and the testing of candidate therapeutics for it.


Asunto(s)
Enfermedades Intestinales , Desnutrición , Humanos , Dispositivos Laboratorio en un Chip , Intestinos , Intestino Delgado/metabolismo , Desnutrición/metabolismo
5.
Mol Ther Nucleic Acids ; 29: 923-940, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36032397

RESUMEN

The current coronavirus disease 2019 (COVID-19) pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III). These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique sequence motif (sense strand, 5'-C; antisense strand, 3'-GGG) that mediates end-to-end dimer self-assembly. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory small interfering RNAs (siRNAs), their activity is independent of Toll-like receptor (TLR) 7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with immunostimulant poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad-spectrum inhibition of infections by many respiratory viruses with pandemic potential, including severe acute respiratory syndrome coronavirus (SARS-CoV)-2, SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus (HCoV)-NL63, and influenza A virus in cell lines, human lung chips that mimic organ-level lung pathophysiology, and a mouse SARS-CoV-2 infection model. These short double-stranded RNAs (dsRNAs) can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics.

6.
bioRxiv ; 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34845453

RESUMEN

The current COVID-19 pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III), in a wide range of human cell types. These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique conserved sequence motif (sense strand: 5'-C, antisense strand: 3'-GGG) that mediates end-to-end dimer self-assembly of these RNAs by Hoogsteen G-G base-pairing. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory siRNAs, their activity is independent of TLR7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad spectrum inhibition of infections by many respiratory viruses with pandemic potential, including SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A, as well as the common cold virus HCoV-NL63 in both cell lines and human Lung Chips that mimic organ-level lung pathophysiology. These short dsRNAs can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics at low cost.

7.
Front Pharmacol ; 12: 718484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759819

RESUMEN

Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium interfaced with human vascular endothelium to study host cellular and inflammatory responses to infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like mechanical deformations in the Intestine Chips compared to when cultured statically as organoids or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation of the endothelium as demonstrated by loss of barrier function, increased cytokine production, and recruitment of circulating peripheral blood mononuclear cells (PBMCs). Treatment of NL63 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to the endothelium. This model of intestinal infection was also used to test the effects of other drugs that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these data suggest that the human Intestine Chip might be useful as a human preclinical model for studying coronavirus related pathology as well as for testing of potential anti-viral or anti-inflammatory therapeutics.

8.
Nat Biomed Eng ; 5(8): 815-829, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33941899

RESUMEN

The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Prueba de COVID-19/métodos , Dispositivos Laboratorio en un Chip , Animales , COVID-19/diagnóstico , COVID-19/virología , Línea Celular , Cricetinae , Femenino , Proteínas Fluorescentes Verdes , Humanos , Masculino , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
9.
Biomaterials ; 192: 75-94, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30439573

RESUMEN

Vaccines are one of the greatest medical interventions of all time and have been successful in controlling and eliminating a myriad of diseases over the past two centuries. Among several vaccination strategies, mucosal vaccines have wide clinical applications and attract considerable interest in research, showing potential as innovative and novel therapeutics. In mucosal vaccination, targeting (microfold) M cells is a frontline prerequisite for inducing effective antigen-specific immunostimulatory effects. In this review, we primarily focus on materials engineered for use as vaccine delivery platforms to target M cells. We also describe potential M cell targeting areas, methods to overcome current challenges and limitations of the field. Furthermore, we present the potential of biomaterials engineering as well as various natural and synthetic delivery technologies to overcome the challenges of M cell targeting, all of which are absent in current literature. Finally, we briefly discuss manufacturing and regulatory processes to bring a robust perspective on the feasibility and potential of this next-generation vaccine technology.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Mucosa Intestinal/metabolismo , Ganglios Linfáticos Agregados/metabolismo , Vacunación/métodos , Vacunas/administración & dosificación , Animales , Materiales Biocompatibles/química , Portadores de Fármacos/química , Humanos , Vacunas/farmacocinética
10.
Nat Biomed Eng ; 2(11): 850-864, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-31015614

RESUMEN

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a well-characterized tumour-suppressor gene that is lost or mutated in about half of metastatic castration-resistant prostate cancers and in many other human cancers. The restoration of functional PTEN as a treatment for prostate cancer has, however, proven difficult. Here, we show that PTEN messenger RNA (mRNA) can be reintroduced into PTEN-null prostate cancer cells in vitro and in vivo via its encapsulation in polymer-lipid hybrid nanoparticles coated with a polyethylene glycol shell. The nanoparticles are stable in serum, elicit low toxicity and enable high PTEN mRNA transfection in prostate cancer cells. Moreover, significant inhibition of tumour growth is achieved when delivered systemically in multiple mouse models of prostate cancer. We also show that the restoration of PTEN function in PTEN-null prostate cancer cells inhibits the phosphatidylinositol 3-kinase (PI3K)-AKT pathway and enhances apoptosis. Our findings provide proof-of-principle evidence of the restoration of mRNA-based tumour suppression in vivo.


Asunto(s)
Nanopartículas/química , Fosfohidrolasa PTEN/genética , ARN Mensajero/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Lípidos/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfohidrolasa PTEN/deficiencia , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Polietilenglicoles/química , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/química , Transducción de Señal , Distribución Tisular , Transfección/métodos
11.
Nat Biomed Eng ; 2(12): 968, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31015729

RESUMEN

The authors wish to add the following sentence into the 'Competing interests' section of this Article: "P.W.K. has investment interest in Context Therapeutics LLC, DRGT, Placon, Seer Biosciences and Tarveda Therapeutics, is a company board member for Context Therapeutics LLC, is a consultant and scientific advisory board member for BIND Biosciences, Inc., BN Immunotherapeutics, DRGT, GE Healthcare, Janssen, Metamark, New England Research Institutes, Inc., OncoCellMDX, Progenity, Sanofi, Seer Biosciences, Tarveda Therapeutics and Thermo Fisher, and serves on data safety monitoring boards for Genentech/Roche and Merck." This has now been included.

12.
Top Curr Chem (Cham) ; 375(2): 34, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28290156

RESUMEN

Gene therapy using recombinant DNA or gene silencing using siRNA have become a prominent area of research in cancer therapy. However, their use in clinical applications is limited due to overall safety concerns and suboptimal efficacy. Although non-viral vectors such as polycationic polymers do not offer the same level of transfection efficiency as their viral counterparts, they still demonstrate immense potential as alternatives to viral vectors, given their versatility, low immunogenicity, ease of large-scale production, and ability to accelerate gene transfer with well-designed delivery platforms. Among these polymers, polyethylenimine (PEI) is considered a state-of-the-art gene carrier, owing to its ability to improve gene transfer capacity and intracellular delivery. Nonetheless, PEI suffers from the critical shortcoming of non-degradability that can lead to severe cytotoxic effects, despite the fact that the level of this toxicity decreases with molecular weight (MW). As a result, a considerable amount of effort has been devoted to designing low-MW PEI derivatives with degradable linkages. This review will categorize the recent advances in these degradable PEI derivatives based on their degradable chemistries, including ester, disulfide, imine, carbamate, amide, and ketal linkages, and summarize their application in gene therapies against various major cancer malignancies.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Neoplasias/terapia , Polietileneimina/química , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Peso Molecular , Polietileneimina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA