Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 960
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(1): 130-142, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975680

RESUMEN

Pigs are the most suitable model to study various therapeutic strategies and drugs for human beings, although knowledge about cell type-specific transcriptomes and heterogeneity is poorly available. Through single-cell RNA sequencing and flow cytometry analysis of the types in the jejunum of pigs, we found that innate lymphoid cells (ILCs) existed in the lamina propria lymphocytes (LPLs) of the jejunum. Then, through flow sorting of live/dead-lineage (Lin)-CD45+ cells and single-cell RNA sequencing, we found that ILCs in the porcine jejunum were mainly ILC3s, with a small number of NK cells, ILC1s, and ILC2s. ILCs coexpressed IL-7Rα, ID2, and other genes and differentially expressed RORC, GATA3, and other genes but did not express the CD3 gene. ILC3s can be divided into four subgroups, and genes such as CXCL8, CXCL2, IL-22, IL-17, and NCR2 are differentially expressed. To further detect and identify ILC3s, we verified the classification of ILCs in the porcine jejunum subgroup and the expression of related hallmark genes at the protein level by flow cytometry. For systematically characterizing ILCs in the porcine intestines, we combined our pig ILC dataset with publicly available human and mice ILC data and identified that the human and pig ILCs shared more common features than did those mouse ILCs in gene signatures and cell states. Our results showed in detail for the first time (to our knowledge) the gene expression of porcine jejunal ILCs, the subtype classification of ILCs, and the markers of various ILCs, which provide a basis for an in-depth exploration of porcine intestinal mucosal immunity.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Animales , Ratones , Porcinos , Yeyuno , Células Asesinas Naturales , Membrana Mucosa
2.
J Immunol ; 213(7): 1008-1022, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39194407

RESUMEN

The functions of the natural dsRNA sensors TLR3 (TRIF) and RIG-I (MAVS) are crucial during viral challenge and have not been accurately clarified in adaptive immune responses to rotavirus (RV) infection. In this study, we found that RV infection caused severe pathological damage to the small intestine of TLR3-/- and TRIF-/- mice. Our data found that dendritic cells from TLR3-/- and TRIF-/- mice had impaired Ag presentation to the RV and attenuated initiation of T cells upon viral infection. These attenuated functions resulted in impaired CD4+ T and CD8+ T function in mice lacking TLR3-TRIF signaling postinfection. Additionally, attenuated proliferative capacity of T cells from TLR3-/- and TRIF-/- mice was observed. Subsequently, we observed a significant reduction in the absolute number of memory T cells in the spleen and mesenteric lymph node (MLN) of TRIF-/- recipient mice following RV infection in a bone marrow chimeric model. Furthermore, there was reduced migration of type 2 classical dendritic cells from the intestine to MLNs after RV infection in TLR3-/- and TRIF-/- mice. Notably, RV infection resulted in attenuated killing of spleen and MLN tissues in TRIF-/- and MAVS-/- mice. Finally, we demonstrated that RV infection promoted apoptosis of CD8+ T cells in TRIF-/- and TLR3-/-MAVS-/- mice. Taken together, our findings highlight an important mechanism of TLR3 signaling through TRIF in mucosal T cell responses to RV and lay the foundation for the development of a novel vaccine.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular , Células Dendríticas , Ratones Noqueados , Infecciones por Rotavirus , Rotavirus , Transducción de Señal , Receptor Toll-Like 3 , Animales , Receptor Toll-Like 3/inmunología , Ratones , Infecciones por Rotavirus/inmunología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Rotavirus/inmunología , Células Dendríticas/inmunología , Ratones Endogámicos C57BL , Mucosa Intestinal/inmunología , Linfocitos T CD8-positivos/inmunología , Inmunidad Mucosa , Presentación de Antígeno/inmunología
3.
J Neurosci ; 44(35)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39060175

RESUMEN

Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remain elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in ribosomal RNA (rRNA) biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DEAD (Asp-Glu-Ala-Asp) box RNA helicase (DDX21) in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of ribosomal DNA. Using high-throughput screening, we identified the small molecules batefenterol and indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.


Asunto(s)
Calmodulina , ARN Helicasas DEAD-box , Hipocampo , ARN Ribosómico , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Animales , ARN Ribosómico/metabolismo , Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Humanos , Neuronas/metabolismo , Ratas , Nucléolo Celular/metabolismo , Células Cultivadas , Células HEK293 , Ratones , Calcio/metabolismo
4.
J Virol ; 98(8): e0103924, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39012142

RESUMEN

In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Inmunidad Innata , Interleucina-22 , Interleucinas , Linfocitos , Virus de la Diarrea Epidémica Porcina , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Porcinos , Interleucinas/metabolismo , Virus de la Diarrea Epidémica Porcina/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Microbioma Gastrointestinal/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/microbiología , Yeyuno/inmunología , Yeyuno/metabolismo , Transducción de Señal , Ligandos , Intestinos/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo
5.
FASEB J ; 38(15): e23852, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39101942

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative ailment that causes slow cartilage degeneration, aberrant bone remodeling, and persistent discomfort, leading to a considerable reduction in the patient's life quality. Current treatment options for TMJOA have limited efficacy. This investigation aimed to explore a potential strategy for halting or reversing the progression of TMJOA through the utilization of exosomes (EXOs) derived from urine-derived stem cells (USCs). The USC-EXOs were obtained through microfiltration and ultrafiltration techniques, followed by their characterization using particle size analysis, electron microscopy, and immunoblotting. Subsequently, an in vivo model of TMJOA induced by mechanical force was established. To assess the changes in the cartilage of TMJOA treated with USC-EXOs, we performed histology analysis using hematoxylin-eosin staining, immunohistochemistry, and histological scoring. Our findings indicate that the utilization of USC-EXOs yields substantial reductions in TMJOA, while concurrently enhancing the structural integrity and smoothness of the compromised condylar cartilage surface. Additionally, USC-EXOs exhibit inhibitory effects on osteoclastogenic activity within the subchondral bone layer of the condylar cartilage, as well as attenuated apoptosis in the rat TMJ in response to mechanical injury. In conclusion, USC-EXOs hold considerable promise as a potential therapeutic intervention for TMJOA.


Asunto(s)
Exosomas , Osteoartritis , Articulación Temporomandibular , Exosomas/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/patología , Osteoartritis/metabolismo , Ratas , Masculino , Humanos , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Células Madre/citología , Células Madre/metabolismo , Ratas Sprague-Dawley , Orina/citología , Trastornos de la Articulación Temporomandibular/terapia , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología , Femenino , Cartílago Articular/patología , Cartílago Articular/metabolismo
6.
Exp Cell Res ; 441(2): 114169, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029574

RESUMEN

Advanced hepatocellular carcinoma (HCC) patients have poor prognosis. As an endogenous antioxidant enzyme involved in a variety of bioprocesses, sulfiredoxin-1 (SRXN1) plays an irreplaceable role in promoting the development of tumors. However, the role and working mechanism of SRXN1 in HCC remain unclear. In this study, we confirmed that SRXN1 promoted the cell proliferation of HCC at genetic and pharmacological level, respectively. Transcriptome sequencing analysis revealed SRXN1 knockdown had a significant effect on the expression of lysosome biogenesis related genes. Further experiments validated that lysosome biogenesis and autophagic flux were enhanced after SRXN1 inhibition and reduced as SRXN1 overexpression. Mechanism study revealed that ROS accumulation induced TFEB nuclear translocation, followed by increased autophagy. Following this rationale, the combination of SRXN1 inhibitor and sorafenib demonstrated noticeable synergistic antitumor effect through the boost of ROS both in vivo and in vitro. Taken together, SRXN1 could be a potential therapeutic target for HCC therapy.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Lisosomas , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Proliferación Celular/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Animales , Ratones , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Ratones Desnudos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Masculino , Sorafenib/farmacología
7.
Mol Cell ; 68(2): 293-307.e5, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053956

RESUMEN

Mitochondrial antiviral signaling platform protein (MAVS) acts as a central hub for RIG-I receptor proximal signal propagation. However, key components in the assembly of the MAVS mitochondrial platform that promote RIG-I mitochondrial localization and optimal activation are still largely undefined. Employing pooled RNAi and yeast two-hybrid screenings, we report that the mitochondrial adaptor protein tripartite motif (TRIM)14 provides a docking platform for the assembly of the mitochondrial signaling complex required for maximal activation of RIG-I-mediated signaling, consisting of WHIP and protein phosphatase PPP6C. Following viral infection, the ubiquitin-binding domain in WHIP bridges RIG-I with MAVS by binding to polyUb chains of RIG-I at lysine 164. The ATPase domain in WHIP contributes to stabilization of the RIG-I-dsRNA interaction. Moreover, phosphatase PPP6C is responsible for RIG-I dephosphorylation. Together, our findings define the WHIP-TRIM14-PPP6C mitochondrial signalosome required for RIG-I-mediated innate antiviral immunity.


Asunto(s)
Proteínas Portadoras/inmunología , Proteína 58 DEAD Box/inmunología , Proteínas de Unión al ADN/inmunología , Inmunidad Innata , Mitocondrias/inmunología , Proteínas Mitocondriales/inmunología , Complejos Multiproteicos/inmunología , Fosfoproteínas Fosfatasas/inmunología , Transducción de Señal/inmunología , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Proteínas Portadoras/genética , Línea Celular Tumoral , Chlorocebus aethiops , Proteína 58 DEAD Box/genética , Proteínas de Unión al ADN/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mitocondrias/genética , Proteínas Mitocondriales/genética , Complejos Multiproteicos/genética , Fosfoproteínas Fosfatasas/genética , Receptores Inmunológicos , Transducción de Señal/genética , Proteínas de Motivos Tripartitos , Células Vero , Virosis/genética , Virosis/inmunología , Virus/genética , Virus/inmunología
8.
Nano Lett ; 24(33): 10106-10113, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39053013

RESUMEN

Strain-free GaAs/AlGaAs semiconductor quantum dots (QDs) grown by droplet etching and nanohole infilling (DENI) are highly promising candidates for the on-demand generation of indistinguishable and entangled photon sources. The spectroscopic fingerprint and quantum optical properties of QDs are significantly influenced by their morphology. The effects of nanohole geometry and infilled material on the exciton binding energies and fine structure splitting are well-understood. However, a comprehensive understanding of GaAs/AlGaAs QD morphology remains elusive. To address this, we employ high-resolution scanning transmission electron microscopy (STEM) and reverse engineering through selective chemical etching and atomic force microscopy (AFM). Cross-sectional STEM of uncapped QDs reveals an inverted conical nanohole with Al-rich sidewalls and defect-free interfaces. Subsequent selective chemical etching and AFM measurements further reveal asymmetries in element distribution. This study enhances the understanding of DENI QD morphology and provides a fundamental three-dimensional structural model for simulating and optimizing their optoelectronic properties.

9.
Semin Cancer Biol ; 88: 18-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410636

RESUMEN

Signal transducer and activator of transcription (STAT) proteins compose a family of transcription factors critical for cancer stem cells (CSCs), and they are involved in maintaining stemness properties, enhancing cell proliferation, and promoting metastasis. Recent studies suggest that STAT proteins engage in reciprocal communication between CSCs and infiltrate immune cell populations in the tumor microenvironment (TME). Emerging evidence has substantiated the influence of immune cells, including macrophages, myeloid-derived suppressor cells, and T cells, on CSC survival through the regulation of STAT signaling. Conversely, dysregulation of STATs in CSCs or immune cells contributes to the establishment of an immunosuppressive TME. Thus, STAT proteins are promising therapeutic targets for cancer treatment, especially when used in combination with immunotherapy. From this perspective, we discuss the complex roles of STATs in CSCs and highlight their functions in the crosstalk between CSCs and the immune microenvironment. Finally, cutting-edge clinical trial progress with STAT signaling inhibitors is summarized.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Factores de Transcripción/metabolismo , Microambiente Tumoral , Antineoplásicos/uso terapéutico , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo
10.
J Am Chem Soc ; 146(1): 1042-1052, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147589

RESUMEN

Electrocatalytic coupling of CO and N2 to synthesize urea under ambient conditions is considered a promising strategy to replace traditional industrial technology. It is crucial to find efficient electrocatalysts that can adsorb and activate N2 and promote the C-N coupling reaction. Herein, a new two-dimensional porous carbon nitride material with multiactive sites is designed, in which boron and transition metal are embedded. Through a series of screening, B2Cr2, B2Mn2, and B2Os2 are predicted to be potential electrocatalysts for urea synthesis. Mechanistic studies are performed on bidentate metal-metal and metal-boron sites, and both NCON and CO mechanisms are explored. The electronic structure analysis shows that there is a strong N2 chemical adsorption within the bidentate site and that the N≡N bond is significantly activated. A new mechanism where free CO is inserted for C-N coupling within the two-dimensional porous structure is proposed.

11.
Prostate ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263692

RESUMEN

PURPOSE: This study was to construct a nomogram utilizing shear wave elastography and assess its efficacy in detecting clinically significant prostate cancer (csPCa). METHODS: 290 elderly people with suspected PCa who received prostate biopsy and shear wave elastography (SWE) imaging were respectively registered from April 2022 to December 2023. The elderly participants were stratified into two groups: those with csPCa and those without csPCa, which encompassed cases of clinically insignificant prostate cancer (cisPCa) and non-prostate cancer tissue, as determined by pathology findings. The LASSO algorithm, known as the least absolute shrinkage and selection operator, was utilized to identify features. Logistic regression analysis was utilized to establish models. Receiver operating characteristic (ROC) and calibration curves were utilized to evaluate the discriminatory ability of the nomogram. Bootstrap (1000 bootstrap iterations) was employed for internal validation and comparison with two models. A decision curve and a clinical impact curve were employed to assess the clinical usefulness. RESULTS: Our nomogram, which contained Emean, ΔEmean, prostate volume, prostate-specific antigen density (PSAD), and transrectal ultrasound (TRUS), showed better discrimination (AUC = 0.89; 95% CI: 0.83-0.94), compared to the clinical model without SWE parameters (p = 0.0007). Its accuracy, sensitivity and specificity were 0.83, 0.89 and 0.78, respectively. Based on the analysis of decision curve, the thresholds ranged from 5% to 90%. According to our nomogram, biopsying patients at a 20% probability threshold resulted in a 25% reduction in biopsies without missing any csPCa. The clinical impact curve demonstrated that the nomogram's predicted outcome is closer to the observed outcome when the probability threshold reaches 20% or greater. CONCLUSION: Our nomogram demonstrates efficacy in identifying elderly individuals with clinically significant prostate cancer, thereby facilitating informed clinical decision-making based on diagnostic outcomes and potential clinical benefits.

12.
Oncologist ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066586

RESUMEN

BACKGROUND AND AIMS: Liver involvement portends poor prognosis in adults. We aimed to characterize the clinical features, liver function tests, radiologic findings, molecular profiles, therapeutic approaches and outcomes of adults patients with Langerhans cell histiocytosis (LCH) with liver involvement. METHODS: We conducted a retrospective analysis of all adults with LCH (≥ 18 years) seen at Peking Union Medical College Hospital (Beijing, China) between January 2001 and December 2022. RESULTS: Among the 445 newly diagnosed adults with LCH, 90 patients had liver involvement at diagnosis and 22 patients at relapse. The median age was 32 years (range, 18-66 years). Of 112 evaluable patients, 108 had full liver function testing, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase (ALP), γ-glutamyl transpeptidase (GGT), and total bilirubin and albumin. Elevated ALP was seen in 63.0% and GGT in 86.1%; 14.8% had elevated bilirubin. Next-generation sequencing of 54 patients revealed frequent BRAFN486_P490 (29.6%), BRAFV600E (18.5%), and MAP2K1 (14.8%). OUTCOMES: After a median 40 months' follow-up (range 1-168 months), 3-year progression-free survival (PFS) and overall survival were 49.7% and 86.6% respectively. In multivariable analyses, ≥3 abnormal liver function tests (HR 3.384, 95% CI 1.550-7.388, P = .002) associated with inferior PFS; immunomodulatory drug therapy (HR 0.073, 95% CI, 0.010-0.541, P = .010) correlated with superior PFS versus chemotherapy. CONCLUSIONS: In summary, elevated GGT and ALP were common in adults with LCH liver involvement. Greater than equal to 3 abnormal liver function tests predicted poor outcomes. Immunomodulatory drug therapy was associated with favorable progression-free survival compared to chemotherapy.

13.
J Virol ; 97(2): e0192322, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779759

RESUMEN

African swine fever (ASF) is a devastating infectious disease of pigs caused by the African swine fever virus (ASFV), which poses a great danger to the global pig industry. Many viral proteins can suppress with interferon signaling to evade the host's innate immune responses. Therefore, the development of an effective vaccine against ASFV has been dampened. Recent studies have suggested that the L83L gene may be integrated into the host genome, weakening the host immune system, but the underlying mechanism is unknown. Our study found that L83L negatively regulates the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. Overexpression of L83L inhibited IFN-ß promoter and ISRE activity, and knockdown of L83L induced higher transcriptional levels of interferon-stimulated genes (ISGs) and phosphorylation levels of IRF3 in primary porcine alveolar macrophages. Mechanistically, L83L interacted with cGAS and STING to promote autophagy-lysosomal degradation of STING by recruiting Tollip, thereby blocking the phosphorylation of the downstream signaling molecules TBK1, IRF3, and IκBα and reducing IFN-I production. Altogether, our study reveals a negative regulatory mechanism involving the L83L-cGAS-STING-IFN-I axis and provides insights into an evasion strategy involving autophagy and innate signaling pathways employed by ASFV. IMPORTANCE African swine fever virus (ASFV) is a large double-stranded DNA virus that primarily infects porcine macrophages. The ASFV genome encodes a large number of immunosuppressive proteins. Current options for the prevention and control of this pathogen remain pretty limited. Our study showed that overexpression of L83L inhibited the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. In contrast, the knockdown of L83L during ASFV infection enhanced IFN-I production in porcine alveolar macrophages. Additional analysis revealed that L83L protein downregulated IFN-I signaling by recruiting Tollip to promote STING autophagic degradation. Although L83L deletion has been reported to have little effect on viral replication, its immune evade mechanism has not been elucidated. The present study extends our understanding of the functions of ASFV-encoded pL83L and its immune evasion strategy, which may provide a new basis for developing a live attenuated vaccine for ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Interferón Tipo I , Proteínas Virales , Animales , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Nucleotidiltransferasas/metabolismo , Porcinos , Proteínas Virales/genética , Proteínas Virales/inmunología
14.
Blood ; 139(17): 2601-2621, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35271698

RESUMEN

Langerhans cell histiocytosis (LCH) can affect children and adults with a wide variety of clinical manifestations, including unifocal, single-system multifocal, single-system pulmonary (smoking-associated), or multisystem disease. The existing paradigms in the management of LCH in adults are mostly derived from the pediatric literature. Over the last decade, the discovery of clonality and MAPK-ERK pathway mutations in most cases led to the recognition of LCH as a hematopoietic neoplasm, opening the doors for treatment with targeted therapies. These advances have necessitated an update of the existing recommendations for the diagnosis and treatment of LCH in adults. This document presents consensus recommendations that resulted from the discussions at the annual Histiocyte Society meeting in 2019, encompassing clinical features, classification, diagnostic criteria, treatment algorithm, and response assessment for adults with LCH. The recommendations favor the use of 18F-Fluorodeoxyglucose positron emission tomography-based imaging for staging and response assessment in the majority of cases. Most adults with unifocal disease may be cured by local therapies, while the first-line treatment for single-system pulmonary LCH remains smoking cessation. Among patients not amenable or unresponsive to these treatments and/or have multifocal and multisystem disease, systemic treatments are recommended. Preferred systemic treatments in adults with LCH include cladribine or cytarabine, with the emerging role of targeted (BRAF and MEK inhibitor) therapies. Despite documented responses to treatments, many patients struggle with a high symptom burden from pain, fatigue, and mood disorders that should be acknowledged and managed appropriately.


Asunto(s)
Histiocitosis de Células de Langerhans , Adulto , Niño , Cladribina/uso terapéutico , Consenso , Histiocitosis de Células de Langerhans/diagnóstico , Histiocitosis de Células de Langerhans/genética , Histiocitosis de Células de Langerhans/terapia , Humanos , Sistema de Señalización de MAP Quinasas , Mutación
15.
Microb Pathog ; 186: 106489, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061666

RESUMEN

Trichinellosis caused by Trichinella spiralis (T. spiralis) is a zoonotic disease that poses a substantial risk to human health. At present, vaccines used to prevent trichinellosis are effective, but the production of antibody levels and immunogenicity are low. Adjuvants can increase antibody levels and vaccine immunogenicity. As a result, it is critical to develop an effective adjuvant for the T. spiralis vaccine. Recent research has shown that traditional Chinese medicine polysaccharides with low-toxicity and biodegradability can act as adjuvants in vaccines. In this study, BALB/c mice were orally inoculated with a recombinant Lactobacillus plantarum (L. plantarum) vaccine expressing the T. spiralis cathepsin F-like protease 1 gene (rTs-CPF1), which was given three times at 10-day intervals. Lycium barbarum polysaccharide (LBP) was administered orally for 37 days. At 37 days after the first immunization, mice were infected with 350 T. spiralis muscle larvae (ML). Specific IgG and sIgA antibody levels against the T. spiralis CPF1 protein were increased in mice immunized with rTs-CPF1+LBP compared to those immunized with rTs-CPF1 alone. Furthermore, LBP increased IFN-γ and IL-4 expression levels, and the number of intestinal and intramuscular worms was significantly reduced in the rTs-CPF1+LBP group compared to that in the rTs-CPF1 group. In the rTs-CPF1+LBP group, the reduction rates of adult worms and muscle larvae were 47.31 % and 68.88 %, respectively. To summarize, LBP promotes the immunoprotective effects of the T. spiralis vaccine and may be considered as a novel adjuvant in parasitic vaccines.


Asunto(s)
Lactobacillus plantarum , Trichinella spiralis , Triquinelosis , Ratones , Humanos , Animales , Trichinella spiralis/genética , Triquinelosis/prevención & control , Triquinelosis/parasitología , Catepsina F , Lactobacillus plantarum/genética , Antígenos Helmínticos/genética , Vacunas Sintéticas , Adyuvantes Inmunológicos/farmacología , Ratones Endogámicos BALB C
16.
Toxicol Appl Pharmacol ; 491: 117050, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111554

RESUMEN

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice. The results showed that BaP induced liver damage, liver oxidative stress and hepatic lipid metabolism disorder. Mechanistically, BaP may disrupt hepatic lipid metabolism through increasing the uptake of free fatty acid (FFA), promoting the synthesis of FA and triglyceride (TG) in the liver and suppressing lipid synthesis in white adipose tissue. Moreover, integrated network toxicology and hepatic transcriptomics revealed that BaP induced hepatotoxicity by acting on several core targets, such as signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and toll-like receptor 2 (TLR2). Further analysis suggested that BaP inhibited JAK2-STAT3 signaling pathway, as supported by molecular docking and western blot. The 16S rRNA sequencing showed that BaP changed the composition of gut microbiota which may link to the hepatotoxicity based on the correlation analysis. Taken together, this study demonstrated that BaP caused liver injury, hepatic lipid metabolism disorder and gut microbiota dysbiosis, providing novel insights into the hepatotoxic mechanism induced by BaP exposure.


Asunto(s)
Benzo(a)pireno , Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Hígado , Animales , Benzo(a)pireno/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Transcriptoma/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Disbiosis/inducido químicamente , Contaminantes Ambientales/toxicidad
17.
Glob Chang Biol ; 30(1): e17005, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37905717

RESUMEN

Climate change has induced substantial shifts in vegetation boundaries such as alpine treelines and shrublines, with widespread ecological and climatic influences. However, spatial and temporal changes in the upper elevational limit of alpine grasslands ("alpine grasslines") are still poorly understood due to lack of field observations and remote sensing estimates. In this study, taking the Tibetan Plateau as an example, we propose a novel method for automatically identifying alpine grasslines from multi-source remote sensing data and determining their positions at 30-m spatial resolution. We first identified 2895 mountains potentially having alpine grasslines. On each mountain, we identified a narrow area around the upper elevational limit of alpine grasslands where the alpine grassline was potentially located. Then, we used linear discriminant analysis to adaptively generate from Landsat reflectance features a synthetic feature that maximized the difference between vegetated and unvegetated pixels in each of these areas. After that, we designed a graph-cut algorithm to integrate the advantages of the Otsu and Canny approaches, which was used to determine the precise position of the alpine grassline from the synthetic feature image. Validation against alpine grasslines visually interpreted from a large number of high-spatial-resolution images showed a high level of accuracy (R2 , .99 and .98; mean absolute error, 22.6 and 36.2 m, vs. drone and PlanetScope images, respectively). Across the Tibetan Plateau, the alpine grassline elevation ranged from 4038 to 5380 m (5th-95th percentile), lower in the northeast and southeast and higher in the southwest. This study provides a method for remotely sensing alpine grasslines for the first-time at large scale and lays a foundation for investigating their responses to climate change.


Asunto(s)
Cambio Climático , Tecnología de Sensores Remotos , Tibet , Pradera , Ecosistema
18.
Chemistry ; 30(27): e202400261, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38433578

RESUMEN

90Sr, as a typical artificial radionuclide, poses a serious threat to human health and the ecological environment. The selective removal of this radionuclide from industrial nuclear waste is crucial for our environment. Here we report a novel potassium fluoroaluminate, K2[(AlF5)H2O], which was synthesized by a simple low-temperature one-step method. It adopts a 1D AlF6-chain structure, which consists of exchangeable potassium ions in between the infinite chains of octahedral Al centers. As a remarkable inorganic ionic exchanger, K2[(AlF5)H2O] has a high chemical stability (resistance of pH=~3-12) and thermal stability (≥~300 °C). It possesses an excellent adsorption selectivity (Kd=~6.1×104 mL ⋅ g-1) and a maximum adsorption capacity of qm=~120.32 mg ⋅ g-1 for Sr2+. Importantly, it still keep a very good selectivity for Sr2+ ions even in the presence of competing Na+, Mg2+ and Ca2+ aqueous solutions. K2[(AlF5)H2O] is the first example of fluoroaluminate ionic exchange materials that can capture Sr2+. This result opens up a new way to design and synthesize inorganic ionic exchangers for the selective removal of Sr2+ ions from radioactive waste water.

19.
J Magn Reson Imaging ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738856

RESUMEN

BACKGROUND: The diagnostic value of carotid plaque characteristics based on higher-resolution vessel wall MRI (HRVW-MRI) combined with white matter lesion (WML) burden for the risk of ischemic stroke is unclear. PURPOSE: To combine carotid plaque features and WML burden to construct a hybrid model for evaluating ischemic stroke severity and prognosis in patients with symptomatic carotid artery stenosis. STUDY TYPE: Retrospective. SUBJECTS: One hundred and ninty-three patients with least one confirmed carotid atherosclerotic stenosis ≥30% and cerebrovascular symptoms within the last 2 weeks (136 in the training cohort and 57 in the test cohort). FIELD STRENGTH/SEQUENCE: 3.0T, T2-weighted fluid attenuated inversion recovery (T2-FLAIR) and diffusion-weighted imaging (DWI); HRVW-MRI: 3D T1-weighted variable flip angle fast spin-echo sequences (VISTA), T2-weighted VISTA, simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP), and contrast-enhanced T1-VISTA. ASSESSMENT: The following features of the plaques or vessel wall were assessed by three MRI readers independently: calcification (CA), intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), ulceration, plaque enhancement (PE), maximum vessel diameter (Max VD), maximum wall thickness (Max WT), total vessel area (TVA), lumen area (LA), plaque volume, and lumen stenosis. WMLs were graded visually and categorized as absent-to-mild WMLs (Fazekas score 0-2) or moderate-severe WMLs (Fazekas score 3-6). WML volumes were quantified using a semiautomated volumetric analysis program. Modified Rankin scores (mRS) were assessed at 90 days, following an outpatient interview, or by telephone. STATISTICAL TESTS: LASSO-logistic regression analysis was performed to construct a model. The performance of the model was evaluated using receiver operating characteristic (ROC) curve analyses, calibration curves, decision curve analyses, and clinical imaging curves. Conditional logistic regression analysis was used to explore the associations between the hybrid model-derived score and the modified Rankin Scale (mRS) score at 90 days. RESULTS: The model was constructed using five selected features, including IPH, plaque enhancement, ulceration, NWI, and total Fazekas score in deep WMLs (DWMLs). The hybrid model yielded an area under the curve of 0.92 (95% confidence interval [CI] 0.87-0.97) in the training cohort and 0.88 (0.80-0.96) in the test cohort. Furthermore, the hybrid model-derived score (odds ratio = 1.28; 95% CI 1.06-1.53) was independently associated with the mRS score 90 days after stroke. DATA CONCLUSIONS: The hybrid model constructed using MRI plaque characteristics and WML burden has potential to be an effective noninvasive method of assessing ischemic stroke severity. The model-derived score has promising utility in judging neurological function recovery. TECHNICAL EFFICACY: Stage 2.

20.
FASEB J ; 37(2): e22776, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36688817

RESUMEN

AQP5 plays a crucial role in maintaining corneal transparency and the barrier function of the cornea. Here, we found that in the corneas of Aqp5-/- mice at older than 6 months, loss of AQP5 significantly increased corneal neovascularization, inflammatory cell infiltration, and corneal haze. The results of immunofluorescence staining showed that upregulation of K1, K10, and K14, and downregulation of K12 and Pax6 were detected in Aqp5-/- cornea and primary corneal epithelial cells. Loss of AQP5 aggravated wound-induced corneal neovascularization, inflammation, and haze. mRNA sequencing, western blotting, and qRT-PCR showed that Wnt2 and Wnt6 were significantly decreased in Aqp5-/- corneas and primary corneal epithelial cells, accompanied by decreased aggregation in the cytoplasm and nucleus of ß-catenin. IIIC3 significantly suppressed corneal neovascularization, inflammation, haze, and maintained corneal transparent epithelial in Aqp5-/- corneas. We also found that pre-stimulated Aqp5-/- primary corneal epithelial cells with IIIC3 caused the decreased expression of K1, K10, and K14, the increased expression of K12, Pax6, and increased aggregation in the cytoplasm and nucleus of ß-catenin. These findings revealed that AQP5 may regulate corneal epithelial homeostasis and function through the Wnt/ß-catenin signaling pathway. Together, we uncovered a possible role of AQP5 in determining corneal epithelial cell fate and providing a potential therapeutic target for corneal epithelial dysfunction.


Asunto(s)
Neovascularización de la Córnea , Vía de Señalización Wnt , Ratones , Animales , Acuaporina 5/genética , Neovascularización de la Córnea/metabolismo , beta Catenina/metabolismo , Córnea/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA