Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 194(4): 2434-2448, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38214208

RESUMEN

Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Semillas/genética , Endospermo/metabolismo , Grano Comestible/metabolismo , Almidón/metabolismo , Ácidos Indolacéticos/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Virol ; 97(6): e0068923, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37289083

RESUMEN

Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.


Asunto(s)
Infecciones por Coronavirus , Células Caliciformes , Receptores Notch , Enfermedades de los Porcinos , Animales , Coronavirus , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Células Caliciformes/citología , Transducción de Señal , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología , Células Madre/citología , Diferenciación Celular , Receptores Notch/metabolismo
3.
Mol Phylogenet Evol ; 193: 108023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342159

RESUMEN

The Himalaya-Hengduan Mountains (HHM), a renowned biodiversity hotspot of the world, harbors the most extensive habitats for alpine plants with extraordinary high levels of endemism. Although the general evolution pattern has been elucidated, the underlying processes driving spectacular radiations in many species-rich groups remain elusive. Corydalis DC. is widely distributed throughout the Northern Hemisphere containing more than 500 species, with high diversity in HHM and adjacent regions. Using 95 plastid genes, 3,258,640 nuclear single nucleotide polymorphisms (SNPs) and eight single-copy nuclear genes (SCNs) generated from genome skimming data, we reconstructed a robust time-calibrated phylogeny of Corydalis comprising more than 100 species that represented all subgenera and most sections. Molecular dating indicated that all main clades of Corydalis began to diverge in the Eocene, with the majority of extant species in HHM emerged from a diversification burst after the middle Miocene. Global pattern of mean divergence times indicated that species distributed in HHM were considerably younger than those in other regions, particularly for the two most species-rich clades (V and VI) of Corydalis. The early divergence and the recent diversification of Corydalis were most likely promoted by the continuous orogenesis and climate change associated with the uplift of the Qinghai-Tibetan Plateau (QTP). Our study demonstrates the effectivity of phylogenomic analyses with genome skimming data on the phylogeny of species-rich taxa, and sheds lights on how the uplift of QTP has triggered the evolutionary radiations of large plant genera in HHM and adjacent regions.


Asunto(s)
Corydalis , Filogenia , Himalayas , Biodiversidad , Ecosistema , Plantas
4.
FASEB J ; 37(1): e22673, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36468692

RESUMEN

Calcium modulates bone cell recruitment, differentiation, and function by binding to the calcium-sensing receptor (CaSR). However, the function of CaSR induced by high extracellular calcium (Ca2+ e ) in the regulation of osteoclast formation in rheumatoid arthritis (RA) remains unknown. Here, we used TNFα-transgenic (TNFTG ) RA mice and their wildtype (WT) littermates fed a normal or a rescue diet (high calcium, high phosphorus, and high lactose diet, termed rescue diet) to compare their joint bone phenotypes. In comparison to TNFTG mice fed the normal diet, articular bone volume and cartilage area are increased, whereas inflamed area, eroded surface, TRAP+ surface, and osteoclast-related genes expression are decreased in TNFTG mice fed the rescue diet. Besides, TNFTG mice fed the rescue diet were found to exhibit more CaSR+ area and less NFATc1+ /TRAP+ area. Furthermore, at normal Ca2+ e concentrations, osteoclast precursors (OCPs) from TNFTG mice formed more osteoclasts than OCPs from WT mice, but the number of osteoclasts gradually decreased when the Ca2+ e concentration increased. Meanwhile, the expression of CaSR increased responding to a high level of Ca2+ e , whereas the expression of NF-κB/NFATc1 signaling molecules decreased. At last, the knockdown of CaSR blocked the inhibition of osteoclast differentiation attributed to high Ca2+ e . Taken together, our findings indicate that high Ca2+ e inhibits osteoclast differentiation in RA mice partially through the CaSR/NF-κB/NFATc1 pathway.


Asunto(s)
Artritis Reumatoide , Receptores Sensibles al Calcio , Ratones , Animales , Receptores Sensibles al Calcio/genética , Calcio , Osteogénesis , FN-kappa B , Dieta
5.
Oral Dis ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287672

RESUMEN

Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation as the essential functional component of primary cilia. The effects of IFT80 on early bone healing of extraction sockets have not been well studied. To investigate whether deletion of Ift80 in alveolar bone-derived mesenchymal stem cells (aBMSCs) affected socket bone healing, we generated a mouse model of specific knockout of Ift80 in Prx1 mesenchymal lineage cells (Prx1Cre ;IFT80f/f ). Our results demonstrated that deletion of IFT80 in Prx1 lineage cells decreased the trabecular bone volume, ALP-positive osteoblastic activity, TRAP-positive osteoclastic activity, and OSX-/COL I-/OCN-positive areas in tooth extraction sockets of Prx1Cre ; IFT80f/f mice compared with IFT80f/f littermates. Furthermore, aBMSCs from Prx1Cre ; IFT80f/f mice showed significantly decreased osteogenic markers and downregulated migration and proliferation capacity. Importantly, the overexpression of TAZ recovered significantly the expressions of osteogenic markers and migration capacity of aBMSCs. Lastly, the local administration of lentivirus for TAZ enhanced the expression of RUNX2 and OSX and promoted early bone healing of extraction sockets from Prx1Cre ; IFT80f/f mice. Thus, IFT80 promotes osteogenesis and early bone healing of tooth sockets through the activation of TAZ/RUNX2 pathway.

6.
BMC Anesthesiol ; 24(1): 48, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308200

RESUMEN

PURPOSE: Previous reports argue that preoperative sleep conditions of patients can influence the dosage of general anaesthesia drugs. Therefore, we aimed to investigate the dose-effect relationship of preoperative sleep disorders on the induction of general anaesthesia with remimazolam tosilate and calculate the Median effective (ED50) and 95% effective (ED95) dosages. METHODS: Included in our study were 56 patients who underwent laparoscopic cholecystectomy at our hospital. A separate group of 27 patients with sleep disorders (SD group) and 29 patients without sleep disorders (NSD group) using the Pittsburgh Sleep Quality Index (PSQI) were also included. According to the Dixon 'up-and-down' design, patients received remimazolam at preselected concentrations starting at 0.2 mg/kg. After the administration of remimazolam, loss of consciousness was observed. By observing whether consciousness disappeared within a minute, we adjusted the dose of remimazolam by 0.1 mg/kg (up and down) in the following patient. The Median effective dose (ED50), 95% effective dose (ED95), and 95% confidence interval (CI) of remimazolam for effective sedation were calculated. RESULTS: The ED50 of remimazolam was 0.226 mg/kg (95%CI 0.221-0.232 mg/kg) in the SD group and 0.191 mg/kg (95%CI, 0.183-0.199 mg/kg) in the NSD group. The ED95 of remimazolam was 0.237 mg/kg (95%CI 0.231-0.262 mg/kg) in the SD group and 0.209 mg/kg (95%CI 0.200-0.254 mg/kg) in the NSD group. CONCLUSIONS: In the SD group, the ED50 and ED95 of remimazolam during anaesthesia induction were 0.226 and 0.237 mg/kg, respectively. The induction dose of remimazolam in the SD group was significantly higher than that in the NSD group.


Asunto(s)
Bencenosulfonatos , Benzodiazepinas , Colecistectomía Laparoscópica , Propofol , Trastornos del Sueño-Vigilia , Humanos , Anestesia General
7.
Ecotoxicol Environ Saf ; 277: 116398, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677066

RESUMEN

BACKGROUND: PM2.5 and its chemical components increase health risks and are associated with depression and gut microbiota. However, there is still limited evidence on whether gut microbiota and short-chain fatty acids (SCFAs) mediate the association between PM2.5, PM2.5 chemical components, and antenatal depression. The purpose of this study was to investigate the mediating role of maternal gut microbiota in correlations between short-term exposure to PM2.5, short-term exposure to PM2.5 chemical components, and antenatal depression. METHODS: Demographic information and stool samples were collected from 75 pregnant women in their third trimester. Their exposure to PM2.5 and PM2.5 chemical components was measured. Participants were divided into the non-antenatal depression group or the antenatal depression group according to the cut-off of 10 points on the Edinburgh Postnatal Depression Scale (EPDS). The gut microbiota were analyzed using the 16 S rRNA-V3/V4 gene sequence, and the concentration of PM2.5 and its chemical components was calculated using the Tracking Air Pollution in China (TAP) database. Gas chromatography-mass spectrometry was used to analyze SCFAs in stool samples. In order to assess the mediating effects of gut microbiota and SCFAs, mediation models were utilized. RESULTS: There were significant differences between gut microbial composition and SCFAs concentrations between the non-antenatal depression group and the antenatal depression group. PM2.5 and its chemical components were positively associated with EPDS scores and negatively associated with genera Enterococcus and Enterobacter. Genera Candidatus_Soleaferrea (ß = -7.21, 95%CI -11.00 to -3.43, q = 0.01) and Enterococcus (ß = -2.37, 95%CI -3.87 to -0.87, q = 0.02) were negatively associated with EPDS scores, indicating their potential protective effects against antenatal depression. There was no significant association between SCFAs and EPDS scores. The mediating role of Enterococcus between different lagged periods of PM2.5, PM2.5 chemical component exposure, and antenatal depression was revealed. For instance, Enterococcus explained 29.23% (95%CI 2.16-87.13%, p = 0.04) of associations between PM2.5 exposure level at the day of sampling (lag 0) and EPDS scores. CONCLUSION: Our study highlights that Enterococcus may mediate the associations between PM2.5, PM2.5 chemical components, and antenatal depression. The mediating mechanism through which the gut microbiota influences PM2.5-induced depression in pregnant women still needs to be further studied.


Asunto(s)
Contaminantes Atmosféricos , Ácidos Grasos Volátiles , Heces , Microbioma Gastrointestinal , Material Particulado , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Humanos , Embarazo , Heces/microbiología , Heces/química , Material Particulado/toxicidad , Ácidos Grasos Volátiles/análisis , Adulto , Contaminantes Atmosféricos/análisis , China , Depresión/inducido químicamente , Exposición Materna/efectos adversos , Exposición Materna/estadística & datos numéricos
8.
Eur Child Adolesc Psychiatry ; 33(7): 2413-2425, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691180

RESUMEN

The gut microbiome has been reported to be associated with nighttime light (NTL) exposure and temperament. However, the specific role of infant gut microbiome plays in NTL exposure and temperament is unclear. This study investigated the potential mediating role of infants' gut microbiome in correlations between NTL exposure and temperament. Demographic information, stool samples, and temperament scores were collected from 40 infants. Temperament was evaluated using the Infants Behavior Questionnaire-Revised (IBQ-R). The gut microbiota was analyzed using 16S rRNA sequencing. Cumulative and lagged effects of NTL exposure were calculated based on residential address (NTLpoint) and a concentric 1 km radius buffer zone around the address (NTL1000m), respectively. Mediation models were utilized for assessing the mediating effects of the gut microbiome. The gut microbiome of infants with higher fear scores was characterized by a higher abundance of Akkermansia and Clostridium_sensu_stricto_1 and a lower abundance of Bacteroides. Mediation models indicated Akkermansia played a full mediating role in associations between NTLpoint, NTL1000m and fear in specific time periods. Genus Akkermansia explained 24.46% and 33.50% of associations between fear and cumulative exposure to NTLpoint and NTL1000m, respectively. This study provides evidence for the mediating role of Akkermansia between NTL exposure and fear. However, further experimental is required to elucidate the mechanisms through which the gut microbiome mediates between NTL exposure and temperament in infants.


Asunto(s)
Akkermansia , Microbioma Gastrointestinal , Temperamento , Humanos , Temperamento/fisiología , Microbioma Gastrointestinal/fisiología , Lactante , Femenino , Masculino , Akkermansia/fisiología , Conducta del Lactante/fisiología , Conducta del Lactante/psicología , Heces/microbiología , Miedo/psicología , Miedo/fisiología , Luz
9.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396955

RESUMEN

The plastid genomes (plastomes) of angiosperms are typically highly conserved, with extreme reconfiguration being uncommon, although reports of such events have emerged in some lineages. In this study, we conducted a comprehensive comparison of the complete plastomes from twenty-two species, covering seventeen genera from three subfamilies (Fumarioideae, Hypecooideae, and Papaveroideae) of Papaveraceae. Our results revealed a high level of variability in the plastid genome size of Papaveraceae, ranging from 151,864 bp to 219,144 bp in length, which might be triggered by the expansion of the IR region and a large number of repeat sequences. Moreover, we detected numerous large-scale rearrangements, primarily occurring in the plastomes of Fumarioideae and Hypecooideae. Frequent gene loss or pseudogenization were also observed for ndhs, accD, clpP, infA, rpl2, rpl20, rpl32, rps16, and several tRNA genes, particularly in Fumarioideae and Hypecooideae, which might be associated with the structural variation in their plastomes. Furthermore, we found that the plastomes of Fumarioideae exhibited a higher GC content and more repeat sequences than those of Papaveroideae. Our results showed that Papaveroideae generally displayed a relatively conserved plastome, with the exception of Eomecon chionantha, while Fumarioideae and Hypecooideae typically harbored highly reconfigurable plastomes, showing high variability in the genome size, gene content, and gene order. This study provides insights into the plastome evolution of Papaveraceae and may contribute to the development of effective molecular markers.


Asunto(s)
Genoma de Plastidios , Papaveraceae , Filogenia , Papaveraceae/genética , Secuencias Repetitivas de Ácidos Nucleicos , Reordenamiento Génico , Evolución Molecular
10.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116760

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Virus de la Gastroenteritis Transmisible/genética , Proteínas Quinasas Activadas por AMP , Línea Celular , Células Epiteliales , Perfilación de la Expresión Génica , Gastroenteritis Porcina Transmisible/genética
11.
J Exp Bot ; 74(1): 162-177, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255986

RESUMEN

Rosaceae is an economically important plant family that can be affected by a multitude of pathogenic microbes, some of which can cause dramatic losses in production. As a type of pattern-recognition receptor, receptor-like proteins (RLPs) are considered vital regulators of plant immunity. Based on genome-wide identification, bioinformatic analysis, and functional determination, we investigated the evolutionary characteristics of RLPs, and specifically those that regulate Valsa canker, a devastating fungal disease affecting apple and pear production. A total of 3028 RLPs from the genomes of 19 species, including nine Rosaceae, were divided into 24 subfamilies. Five subfamilies and seven co-expression modules were found to be involved in the responses to Valsa canker signals of the resistant pear rootstock Pyrus betulifolia 'Duli-G03'. Fourteen RLPs were subsequently screened as candidate genes for regulation of resistance. Among these, PbeRP23 (Chr13.g24394) and PbeRP27 (Chr16.g31400) were identified as key resistance genes that rapidly enhance the resistance of 'Duli-G03' and strongly initiate immune responses, and hence they have potential for further functional exploration and breeding applications for resistance to Valsa canker. In addition, as a consequence of this work we have established optimal methods for the classification and screening of disease-resistant RLPs.


Asunto(s)
Ascomicetos , Malus , Pyrus , Rosaceae , Rosaceae/genética , Rosaceae/metabolismo , Filogenia , Evolución Molecular , Fitomejoramiento , Malus/genética , Malus/metabolismo , Pyrus/genética , Pyrus/metabolismo , Ascomicetos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Environ Res ; 231(Pt 3): 116304, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37268213

RESUMEN

BACKGROUND: Ambient air pollutant exposure can change the composition of gut microbiota at 6-months of age, but there is no epidemiological evidence on the impacts of exposure to particulate matter with an aerodynamic diameter ≤1 µm (PM1) during pregnancy on gut microbiota in mothers and neonates. We aimed to determine if gestational PM1 exposure is associated with the gut microbiota of mothers and neonates. METHODS: Leveraging a mother-infant cohort from the central region of China, we estimated the exposure concentrations of PM1 during pregnancy based on residential address records. The gut microbiota of mothers and neonates was analyzed using 16 S rRNA V3-V4 gene sequences. Functional pathway analyses of 16 S rRNA V3-V4 bacterial communities were conducted using Tax4fun. The impact of PM1 exposure on α-diversity, composition, and function of gut microbiota in mothers and neonates was evaluated using multiple linear regression, controlling for nitrogen dioxide (NO2) and ozone (O3). Permutation multivariate analysis of variance (PERMANOVA) was used to analyze the interpretation degree of PM1 on the sample differences at the OTU level using the Bray-Curtis distance algorithm. RESULTS: Gestational PM1 exposure was positively associated with the α-diversity of gut microbiota in neonates and explained 14.8% (adj. P = 0.026) of the differences in community composition among neonatal samples. In contrast, gestational PM1 exposure had no impact on the α- and ß-diversity of gut microbiota in mothers. Gestational PM1 exposure was positively associated with phylum Actinobacteria of gut microbiota in mothers, and genera Clostridium_sensu_stricto_1, Streptococcus, Faecalibacterium of gut microbiota in neonates. At Kyoto Encyclopedia of Genes and Genomes pathway level 3, the functional analysis results showed that gestational PM1 exposure significantly down-regulated Nitrogen metabolism in mothers, as well as Two-component system and Pyruvate metabolism in neonates. While Purine metabolism, Aminoacyl-tRNA biosynthesis, Pyrimidine metabolism, and Ribosome in neonates were significantly up-regulated. CONCLUSIONS: Our study provides the first evidence that exposure to PM1 has a significant impact on the gut microbiota of mothers and neonates, especially on the diversity, composition, and function of neonatal meconium microbiota, which may have important significance for maternal health management in the future.


Asunto(s)
Contaminantes Atmosféricos , Microbioma Gastrointestinal , Embarazo , Recién Nacido , Lactante , Femenino , Humanos , Madres , Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad , Meconio , Bacterias
13.
Blood Press ; 32(1): 6-15, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36495008

RESUMEN

PURPOSE: We investigated plasma angiotensin-converting enzyme 2 (ACE2) concentration in a population sample and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue in patients who underwent lung surgery. MATERIALS AND METHODS: The study participants were recruited from a residential area in the suburb of Shanghai for the plasma ACE2 concentration study (n = 503) and the lung tissue samples were randomly selected from the storage in Ruijin Hospital (80 men and 78 age-matched women). RESULTS: In analyses adjusted for covariables, men had a significantly higher plasma ACE2 concentration (1.21 vs. 0.98 ng/mL, p = 0.027) and the mean intensity of ACE2 in the lung tissue (55.1 vs. 53.9 a.u., p = 0.037) than women. With age increasing, plasma ACE2 concentration decreased (p = 0.001), while the mean intensity of ACE2 in the lung tissue tended to increase (p = 0.087). Plasma ACE2 concentration was higher in hypertension than normotension, especially treated hypertension (1.23 vs. 0.98 ng/mL, p = 0.029 vs. normotension), with no significant difference between users of RAS inhibitors and other classes of antihypertensive drugs (p = 0.64). There was no significance of the mean intensity of ACE2 in the lung tissue between patients taking and those not taking RAS inhibitors (p = 0.14). Neither plasma ACE2 concentration nor the mean intensity of ACE2 in the lung tissue differed between normoglycemia and diabetes (p ≥ 0.20). CONCLUSION: ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics of patients.Plain language summary What is the context? • The primary physiological function of ACE2 is the degradation of angiotensin I and II to angiotensin 1-9 and 1-7, respectively. • ACE2 was found to behave as a mediator of the severe acute respiratory syndrome coronavirus (SARS) infection. • There is little research on ACE2 in humans, especially in the lung tissue. • In the present report, we investigated plasma ACE2 concentration and the ACE2 expression quantitated with the diaminobenzidine mean intensity in the lung tissue respectively in two study populations. What is new? • Our study investigated both circulating and tissue ACE2 in human subjects. The main findings were: • In men as well as women, plasma ACE2 concentration was higher in younger than older participants, whereas the mean intensity of ACE2 in the lung tissue increase with age increasing. • Compared with normotension, hypertensive patients had higher plasma ACE2 concentration but similar mean intensity of ACE2 in the lung tissue. • Neither plasma ACE2 concentration nor lung tissue ACE2 expression significantly differed between users of RAS inhibitors and other classes of antihypertensive drugs. What is the impact? • ACE2 in the plasma and lung tissue showed divergent changes according to several major characteristics, such as sex, age, and treated and untreated hypertension. • A major implication is that plasma ACE2 concentration might not be an appropriate surrogate for the ACE2 expression in the lung tissue, and hence not a good predictor of SARS-COV-2 infection or fatality.


Asunto(s)
COVID-19 , Hipertensión , Masculino , Humanos , Femenino , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/farmacología , SARS-CoV-2/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/farmacología , Antihipertensivos/farmacología , Sistema Renina-Angiotensina , China , Angiotensina I , Pulmón
14.
Crit Rev Eukaryot Gene Expr ; 32(6): 21-31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35997115

RESUMEN

The objective of the study was to explore the role of SDC1 in breast cancer cells. Our study also investigated the regulatory relationship between SDC1 and the microRNA (miRNA) miR-335-5p as well as the impact of these two genes on the progression of breast cancer. Bioinformatic approaches were employed to analyze the differentially expressed messenger RNAs (mRNAs) and miRNAs (DE-mRNAs and DE-miRNAs) in breast cancer tissue. Then mRNA SC1 was obtained. Differentially downregulated mRNAs were intersected with target miRNAs predicted by databases, and miR-335-5p was determined as the study object. Quantitative reverse transcription polymerase chain reaction was applied to assess the expressions of SDC1 and miR-335-5p in each cell line. Next, Western blot assay was conducted to detect the protein level of SDC1 and dual-luciferase assay was performed to verify the binding relationship between miR-335-5p and SDC1. Finally, we conducted methyl thiazolyl tetrazolium (MTT), colony formation, and Transwell assays and flow cytometry to further investigate the impacts of SDC1 and miR-335-5p on the progression of breast cancer. SDC1 was significantly highly expressed while miR-335-5p was remarkably lowly expressed in human breast cancer. Silencing SDC1 in breast cancer blocked the proliferation, migration and invasion of the cells. In breast cancer, SDC1 was a target gene of miR-335-5p and silencing miR-335-5p notably increased SDC1 expression. Compared with the silence of miR-335-5p, simultaneous silences of miR-335-5p and SDC1 significantly reduced the proliferative, migratory and invasive abilities of breast cancer cells. The result revealed the interaction between miR-335-5p and SDC1 in the progression of breast cancer, which may contribute to the treatments for this cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Sindecano-1 , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Humanos , MicroARNs/genética , Invasividad Neoplásica/genética , Sindecano-1/genética
15.
PLoS Pathog ; 16(7): e1008682, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32730327

RESUMEN

Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of newborn piglets causing acute, severe atrophic enteritis. The underlying mechanisms of PEDV infection and the reasons why newborn piglets are more susceptible than older pigs remain incompletely understood. Iron deficiency is common in newborn piglets. Here we found that high levels of transferrin receptor 1 (TfR1) distributed in the apical tissue of the intestinal villi of newborns, and intracellular iron levels influence the susceptibility of newborn piglets to PEDV. We show that iron deficiency induced by deferoxamine (DFO, an iron chelating agent) promotes PEDV infection while iron accumulation induced by ferric ammonium citrate (FAC, an iron supplement) impairs PEDV infection in vitro and in vivo. Besides, PEDV infection was inhibited by occluding TfR1 with antibodies or decreasing TfR1 expression. Additionally, PEDV infection was increased in PEDV-resistant Caco-2 and HEK 293T cells over-expressed porcine TfR1. Mechanistically, the PEDV S1 protein interacts with the extracellular region of TfR1 during PEDV entry, promotes TfR1 re-localization and clustering, then activates TfR1 tyrosine phosphorylation mediated by Src kinase, and heightens the internalization of TfR1, thereby promoting PEDV entry. Taken together, these data suggest that the higher expression of TfR1 in the apical tissue of the intestinal villi caused by iron deficiency, accounts for newborn piglets being acutely susceptible to PEDV.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Susceptibilidad a Enfermedades/metabolismo , Mucosa Intestinal/metabolismo , Virus de la Diarrea Epidémica Porcina , Receptores de Transferrina/metabolismo , Enfermedades de los Porcinos/metabolismo , Animales , Animales Recién Nacidos , Susceptibilidad a Enfermedades/virología , Deficiencias de Hierro , Porcinos , Enfermedades de los Porcinos/virología
16.
Opt Express ; 30(4): 5200-5212, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209489

RESUMEN

An intense terahertz laser field is shown to actively manipulate the electronic states, as well as the linear and nonlinear optical absorption coefficients, of the laterally-coupled quantum well wires (LCQWWs). The laser-dressed quantum states of the LCQWWs are achieved using the non-perturbative Floquet method and the two-dimensional diagonalization technique under the effective mass approximation. We have demonstrated that the intense terahertz laser field induces a strong deformation of the confinement potential configuration of the LCQWWs, thus pronouncedly dressing the energy levels and wave functions. An unambiguous picture is depicted for the evolution of the laser-dressed quantum states with the increase of the laser-dressed parameter characterizing the strength of the laser-dressed effect. On this basis, the resonant peak positions of the linear and nonlinear optical absorption coefficients feature a blue shift followed by a red shift with an increase of the laser-dressed parameter. Furthermore, the evolution of the peak values for the linear and third-order nonlinear optical absorption coefficients as a function of the laser-dressed parameter is comprehensively discussed. Moreover, in contrast to the case without intense terahertz laser field, the peak values of the linear, third-order nonlinear, and total optical absorption coefficients can be obviously enhanced at the same frequency position by manipulating the appropriate laser-dressed parameter. A similar feature can be found in the linear, third-order nonlinear, and total refractive index changes. Our findings are conducive to the implementation of the expected quantum states and nonlinear optical effects in the LCQWWs, paving the way for new designs in tunable optical switches, infrared photo-detectors and infrared modulators.

17.
Opt Express ; 30(18): 32010-32018, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242271

RESUMEN

The parameter-tuning stochastic resonance (SR) method can convert part of the noise energy into the signal energy to suppress the noise and amplify the signal, comparing with traditional weak periodic signal detection methods (e.g., time average method, filtering method, and correlation analysis method). In this work, the numerical calculation is conducted to find the optimal resonance parameters for applying the SR method to the wavelength modulation spectroscopy (WMS). Under the stochastic resonance state, the peak value of 2f signal (a constant concentration of CH4∼20 ppm) is effectively amplified to ∼0.0863 V, which is 3.8 times as much as the peak value of 4000-time average signal (∼0.0231 V). Although the standard deviation also increases from ∼0.0015 V(1σ) to ∼0.003 V(1σ), the SNR can be improved by 1.83 times (from ∼25.9 to ∼15.8) correspondingly. A linear spectral response of SR 2f signal peak value to raw 2f signal peak value is obtained. It suggests that the SR method is effective for enhancing photoelectric signal under strong noise background.

18.
J Exp Bot ; 73(12): 3913-3928, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262703

RESUMEN

Glandular trichomes of tobacco (Nicotiana tabacum) produce blends of acylsucroses that contribute to defence against pathogens and herbivorous insects, but the mechanism of assembly of these acylsugars has not yet been determined. In this study, we isolated and characterized two trichome-specific acylsugar acyltransferases that are localized in the endoplasmic reticulum, NtASAT1 and NtASAT2. They sequentially catalyse two additive steps of acyl donors to sucrose to produce di-acylsucrose. Knocking out of NtASAT1 or NtASAT2 resulted in deficiency of acylsucrose; however, there was no effect on acylsugar accumulation in plants overexpressing NtASAT1 or NtASAT2. Genomic analysis and profiling revealed that NtASATs originated from the T subgenome, which is derived from the acylsugar-producing diploid ancestor N. tomentosiformis. Our identification of NtASAT1 and NtASAT2 as enzymes involved in acylsugar assembly in tobacco potentially provides a new approach and target genes for improving crop resistance against pathogens and insects.


Asunto(s)
Nicotiana , Tricomas , Aciltransferasas/genética , Proteínas de Plantas/genética , Sacarosa , Nicotiana/genética , Tricomas/genética
19.
Altern Ther Health Med ; 28(1): 86-91, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34453505

RESUMEN

Rickets is one of the most prevalent non-communicable diseases in children in the developing world. It is often found in cultures in which children follow strict vegetarian diets and are not exposed to vitamin D-enhanced foods. While a rare occurrence, X-linked hypophosphatemic rickets may be the most frequent type of the disease seen outside the Third World today. However, there is not much credible information on the extent of the development of rickets. Therefore, pediatric nurses must be able to recognize children at risk and provide best practice care for the prevention and treatment of rickets. When caring for children in hospitals, communities or classrooms, nurses play a vital role in identifying children at risk for hypovitaminosis D and advising families to, if possible, follow safe diets and take supplements in order to avoid health complications associated with low levels of vitamin D. This study examines the prevalence and variables contributing to rickets, including hypovitaminosis vitamin D, the consequent orthopedic problems and the role of nurses in preventing and managing the pathogenesis of rickets and ultimately avoiding extreme deficits that result in bone deformities and the need for corrective surgery.


Asunto(s)
Raquitismo , Deficiencia de Vitamina D , Niño , Suplementos Dietéticos , Humanos , Raquitismo/epidemiología , Raquitismo/terapia , Vitamina D/uso terapéutico , Deficiencia de Vitamina D/epidemiología , Vitaminas
20.
Genomics ; 113(4): 1719-1732, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33865956

RESUMEN

Dendritic cells are first guard to defend avian infectious bronchitis virus (IBV) infection and invasion. While IBV always suppress dendritic cells and escape the degradation and presentation, which might help viruses to transfer and migrant. Initially, we compared two IBV's function in activating avian bone marrow dendritic cells (BMDCs) and found that both IBV (QX and M41) did not significantly increase surface marker of avian BMDCs. Moreover, a significant decrease of m6A modification level in mRNA, but an increased in the ut RNA were observed in avian BMDCs upon the prevalent IBV (QX) infection. Further study found that both non-structural protein 7 (NSP7) and NSP16 inhibited the maturation and cytokines secretion of BMDCs, as well as their antigen-presentation ability. Lastly, we found that gga-miR21, induced by both NSP7 and NSP16, inhibited the antigen presentation of avian BMDCs. Taken together, our results illustrated how IBV inhibited the antigen-presentation of avian DCs.


Asunto(s)
Virus de la Bronquitis Infecciosa , Animales , Presentación de Antígeno , Pollos/genética , Células Dendríticas , Virus de la Bronquitis Infecciosa/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA