Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.037
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 75(4): 823-834.e5, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31302001

RESUMEN

Sirt3, as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolic adaption to various stresses. However, how to regulate Sirt3 activity responding to metabolic stress remains largely unknown. Here, we report Sirt3 as a SUMOylated protein in mitochondria. SUMOylation suppresses Sirt3 catalytic activity. SUMOylation-deficient Sirt3 shows elevated deacetylation on mitochondrial proteins and increased fatty acid oxidation. During fasting, SUMO-specific protease SENP1 is accumulated in mitochondria and quickly de-SUMOylates and activates Sirt3. SENP1 deficiency results in hyper-SUMOylation of Sirt3 and hyper-acetylation of mitochondrial proteins, which reduces mitochondrial metabolic adaption responding to fasting. Furthermore, we find that fasting induces SENP1 translocation into mitochondria to activate Sirt3. The studies on mice show that Sirt3 SUMOylation mutation reduces fat mass and antagonizes high-fat diet (HFD)-induced obesity via increasing oxidative phosphorylation and energy expenditure. Our results reveal that SENP1-Sirt3 signaling modulates Sirt3 activation and mitochondrial metabolism during metabolic stress.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Mitocondrias/metabolismo , Mutación , Obesidad/metabolismo , Transducción de Señal , Sirtuina 3/metabolismo , Sumoilación , Acetilación , Animales , Cisteína Endopeptidasas/genética , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Mutantes , Mitocondrias/genética , Mitocondrias/patología , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/patología , Sirtuina 3/genética
2.
Gastroenterology ; 166(6): 1130-1144.e8, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38262581

RESUMEN

BACKGROUND & AIMS: Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS: A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS: The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS: Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Senescencia Celular , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Proteína Exportina 1 , Carioferinas , Neoplasias Hepáticas , Inhibidores de Proteínas Quinasas , Receptores Citoplasmáticos y Nucleares , Ubiquitina-Proteína Ligasas , Humanos , Senescencia Celular/efectos de los fármacos , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Carioferinas/antagonistas & inhibidores , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Proteínas de Unión a Retinoblastoma/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Sinergismo Farmacológico , Senoterapéuticos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Células Hep G2 , Ratones , Piperazinas , Piridinas , Triazoles
3.
J Mol Cell Cardiol ; 193: 1-10, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38789075

RESUMEN

BACKGROUND: Hypothermic ischemia-reperfusion arrhythmia is a common complication of cardiothoracic surgery under cardiopulmonary bypass, but few studies have focused on this type of arrhythmia. Our prior study discovered reduced myocardial Cx43 protein levels may be linked to hypothermic reperfusion arrhythmias. However, more detailed molecular mechanism research is required. METHOD: The microRNA and mRNA expression levels in myocardial tissues were detected by real-time quantitative PCR (RT-qPCR). Besides, the occurrence of hypothermic reperfusion arrhythmias and changes in myocardial electrical conduction were assessed by electrocardiography and ventricular epicardial activation mapping. Furthermore, bioinformatics analysis, applying antagonists of miRNA, western blotting, immunohistochemistry, a dual luciferase assay, and pearson correlation analysis were performed to investigate the underlying molecular mechanisms. RESULTS: The expression level of novel-miR-17 was up-regulated in hypothermic ischemia-reperfusion myocardial tissues. Inhibition of novel-miR-17 upregulation ameliorated cardiomyocyte edema, reduced apoptosis, increased myocardial electrical conduction velocity, and shortened the duration of reperfusion arrhythmias. Mechanistic studies showed that novel-miR-17 reduced the expression of Cx43 by directly targeting Gja1 while mediating the activation of the PKC/c-Jun signaling pathway. CONCLUSION: Up-regulated novel-miR-17 is a newly discovered pro-arrhythmic microRNA that may serve as a potential therapeutic target and biomarker for hypothermic reperfusion arrhythmias.

4.
J Cell Physiol ; 239(3): e31027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37099691

RESUMEN

Pulmonary fibrosis is a chronic and serious interstitial lung disease with little effective therapies currently. Our incomplete understanding of its pathogenesis remains obstacles in therapeutic developments. Sirtuin 6 (SIRT6) has been shown to mitigate multiple organic fibrosis. However, the involvement of SIRT6-mediated metabolic regulation in pulmonary fibrosis remains unclear. Here, we demonstrated that SIRT6 was predominantly expressed in alveolar epithelial cells in human lung tissues by using a single-cell sequencing database. We showed that SIRT6 protected against bleomycin-induced injury of alveolar epithelial cells in vitro and pulmonary fibrosis of mice in vivo. High-throughput sequencing revealed enriched lipid catabolism in Sirt6 overexpressed lung tissues. Mechanismly, SIRT6 ameliorates bleomycin-induced ectopic lipotoxicity by enhancing lipid degradation, thereby increasing the energy supply and reducing the levels of lipid peroxides. Furthermore, we found that peroxisome proliferator-activated receptor α (PPARα) was essential for SIRT6-mediated lipid catabolism, anti-inflammatory responses, and antifibrotic signaling. Our data suggest that targeting SIRT6-PPARα-mediated lipid catabolism could be a potential therapeutic strategy for diseases complicated with pulmonary fibrosis.


Asunto(s)
Metabolismo de los Lípidos , Fibrosis Pulmonar , Sirtuinas , Animales , Humanos , Ratones , Bleomicina , PPAR alfa/genética , PPAR alfa/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
5.
Oncologist ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934301

RESUMEN

BACKGROUND: Clinical studies are often limited by resources available, which results in constraints on sample size. We use simulated data to illustrate study implications when the sample size is too small. METHODS AND RESULTS: Using 2 theoretical populations each with N = 1000, we randomly sample 10 from each population and conduct a statistical comparison, to help make a conclusion about whether the 2 populations are different. This exercise is repeated for a total of 4 studies: 2 concluded that the 2 populations are statistically significantly different, while 2 showed no statistically significant difference. CONCLUSIONS: Our simulated examples demonstrate that sample sizes play important roles in clinical research. The results and conclusions, in terms of estimates of means, medians, Pearson correlations, chi-square test, and P values, are unreliable with small samples.

6.
Eur J Immunol ; 53(10): e2250136, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37377338

RESUMEN

Decades of extensive research have documented the presence of neural innervations of sensory, sympathetic, or parasympathetic origin in primary and secondary lymphoid organs. Such neural inputs can release neurotransmitters and neuropeptides to directly modulate the functions of various immune cells, which represents one of the essential aspects of the body's neuroimmune network. Notably, recent studies empowered by state-of-the-art imaging techniques have comprehensively assessed neural distribution patterns in BM, thymus, spleen, and LNs of rodents and humans, helping clarify several controversies lingering in the field. In addition, it has become evident that neural innervations in lymphoid organs are not static but undergo alterations in pathophysiological contexts. This review aims to update the current information on the neuroanatomy of lymphoid organs obtained through whole-tissue 3D imaging and genetic approaches, focusing on anatomical features that may designate the functional modulation of immune responses. Moreover, we discuss several critical questions that call for future research, which will advance our in-depth understanding of the importance and complexity of neural control of lymphoid organs.


Asunto(s)
Neuroanatomía , Neuropéptidos , Humanos , Bazo , Timo , Inmunidad , Tejido Linfoide
7.
Am J Pathol ; 193(3): 296-312, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509119

RESUMEN

The intestines play a crucial role in the development of sepsis. The balance between autophagy and apoptosis in intestinal epithelial cells is dynamic and determines intestinal permeability. The present study focused on the potential role of autophagy in sepsis-induced intestinal barrier dysfunction and explored the mechanisms in vivo and in vitro. Excessive apoptosis in intestinal epithelia and a disrupted intestinal barrier were observed in septic mice. Promoting autophagy with rapamycin reduced intestinal epithelial apoptosis and restored intestinal barrier function, presenting as decreased serum diamine oxidase (DAO) and fluorescein isothiocyanate-dextran 40 (FD40) levels and increased expression of zonula occludens-1 (ZO-1) and Occludin. Polo-like kinase 1 (PLK1) knockdown in mice ameliorated intestinal epithelial apoptosis and the intestinal barrier during sepsis, whereas these effects were reduced with chloroquine and enhanced with rapamycin. PLK1 also promoted cell autophagy and improved lipopolysaccharide-induced apoptosis and high permeability in vitro. Moreover, PLK1 physically interacted with mammalian target of rapamycin (mTOR) and participated in reciprocal regulatory crosstalk in intestinal epithelial cells during sepsis. This study provides novel insight into the role of autophagy in sepsis-induced intestinal barrier dysfunction and indicates that the PLK1-mTOR axis may be a promising therapeutic target for sepsis.


Asunto(s)
Enfermedades Intestinales , Sepsis , Ratones , Animales , Sirolimus/farmacología , Sirolimus/metabolismo , Mucosa Intestinal/metabolismo , Enfermedades Intestinales/metabolismo , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Mamíferos , Quinasa Tipo Polo 1
8.
J Exp Bot ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717070

RESUMEN

A functional female gametophyte is the basis of successful sexual reproduction in flowering plants. During female gametophyte development, the megaspore mother cell (MMC), differentiated from a single subepidermal somatic cell in the nucellus, undergoes meiosis to produce four megaspores; only the one at the chalazal end, referred to as functional megaspore (FM), undergoes three rounds of mitosis and develops into a mature embryo sac. Here, we reported that RING1A and RING1B (RING1A/B), two functionally redundant Polycomb proteins in Arabidopsis, are critical for female gametophyte development. The mutations of RING1A/B resulted in defects in MMC and FM's specification and subsequent mitosis of FM, thereby leading to aborted ovules. Gene expression analysis revealed several genes essential for female gametophyte development, including Argonaute (AGO) family genes and critical transcription factors, were ectopically expressed in ring1a ring1b. Furthermore, RING1A/B bound some of these genes to promote H2A monoubiquitination (H2Aub) deposition. Together, RING1A/B promote H2Aub modification at genes essential for female gametophyte development, suppressing their expression to ensure the progression of female gametophyte development.

9.
Cell Commun Signal ; 22(1): 47, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233863

RESUMEN

BACKGROUND: Omental metastasis is the major cause of ovarian cancer recurrence and shortens patient survival, which can be largely attributed to the dynamic evolution of the fertile metastatic microenvironment driven by cancer cells. Previously, we found that adipose-derived mesenchymal stem cells (ADSCs) undergoing a phenotype shift toward cancer-associated fibroblasts (CAFs) participated in the orchestrated omental premetastatic niche for ovarian cancer. Here, we aim to elucidate the underlying mechanisms. METHODS: Small extracellular vesicles were isolated from ovarian cancer cell lines (ES-2 and its highly metastatic subline, ES-2-HM) and patient ascites using ultracentrifugation. Functional experiments, including Transwell and EdU assays, and molecular detection, including Western blot, immunofluorescence, and RT-qPCR, were performed to investigate the activation of ADSCs in vitro. High-throughput transcriptional sequencing and functional assays were employed to identify the crucial functional molecules inducing CAF-like activation of ADSCs and the downstream effector of miR-320a. The impact of extracellular vesicles and miR-320a-activated ADSCs on tumor growth and metastasis was assessed in subcutaneous and orthotopic ovarian cancer xenograft mouse models. The expression of miR-320a in human samples was evaluated using in situ hybridization staining. RESULTS: Primary human ADSCs cocultured with small extracellular vesicles, especially those derived from ES-2-HM, exhibited boosted migration, invasion, and proliferation capacities and elevated α-SMA and FAP levels. Tumor-derived small extracellular vesicles increased α-SMA-positive stromal cells, fostered omental metastasis, and shortened the survival of mice harboring orthotopic ovarian cancer xenografts. miR-320a was abundant in highly metastatic cell-derived extracellular vesicles, evoked dramatic CAF-like transition of ADSCs, targeted the 3'-untranslated region of integrin subunit alpha 7 and attenuated its expression. miR-320a overexpression in ovarian cancer was associated with omental metastasis and shorter survival. miR-320a-activated ADSCs facilitated tumor cell growth and omental metastasis. Depletion of integrin alpha 7 triggered CAF-like activation of ADSCs in vitro. Video Abstract CONCLUSIONS: miR-320a in small extracellular vesicles secreted by tumor cells targets integrin subunit alpha 7 in ADSCs and drives CAF-like activation, which in turn facilitates omental metastasis of ovarian cancer.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Neoplasias Ováricas , Humanos , Ratones , Animales , Femenino , Recurrencia Local de Neoplasia , Neoplasias Ováricas/patología , Vesículas Extracelulares/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Integrinas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
10.
Artículo en Inglés | MEDLINE | ID: mdl-38290937

RESUMEN

OBJECTIVE: Obstructive sleep apnea (OSA) is associated with impaired cognitive function. Exosomes are secreted by most cells and play a role in OSA-associated cognitive impairment (CI). The aim of this study was to investigate whether OSA plasma-derived exosomes cause CI through hippocampal neuronal cell pyroptosis, and to identify exosomal miRNAs in OSA plasma-derived. MATERIALS AND METHODS: Plasma-derived exosomes were isolated from patients with severe OSA and healthy comparisons. Daytime sleepiness and cognitive function were assessed using the Epworth Sleepiness Scale (ESS) and the Beijing version of the Montreal Cognitive Assessment Scale (MoCA). Exosomes were coincubated with mouse hippocampal neurons (HT22) cells to evaluate the effect of exosomes on pyroptosis and inflammation of HT22 cells. Meanwhile, exosomes were injected into C57BL/6 male mice via caudal vein, and then morris water maze was used to evaluate the spatial learning and memory ability of the mice, so as to observe the effects of exosomes on the cognitive function of the mice. Western blot and qRT-PCR were used to detect the expressions of Gasdermin D (GSDMD) and Caspase-1 to evaluate the pyroptosis level. The expression of IL-1ß, IL-6, IL-18 and TNF-α was detected by qRT-PCR to assess the level of inflammation. Correlations of GSDMD and Caspase-1 expression with clinical parameters were evaluated using Spearman's rank correlation analysis. In addition, plasma exosome miRNAs profile was identified, followed by Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS: Compared to healthy comparisons, body mass index (BMI), apnea-hypopnea index (AHI), oxygen desaturation index (ODI), and ESS scores were increased in patients with severe OSA, while lowest oxygen saturation during sleep (LSaO2), mean oxygen saturation during sleep (MSaO2) and MoCA scores were decreased. Compared to the PBS group (NC) and the healthy comparison plasma-derived exosomes (NC-EXOS), the levels of GSDMD and Caspase-1 and IL-1ß, IL-6, IL-18 and TNF-α were increased significantly in the severe OSA plasma-derived exosomes (OSA-EXOS) coincubated with HT22 cells. Compared to the NC and NC-EXOS groups, the learning and memory ability of mice injected with OSA-EXOS was decreased, and the expression of GSDMD and Caspase-1 in hippocampus were significantly increased, along with the levels of IL-1ß, IL-6, IL-18 and TNF-α. Spearman correlation analysis found that clinical AHI in HCs and severe OSA patients was positively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups, while negatively correlated with clinical MoCA. At the same time, clinical MoCA in HCs and severe OSA patients was negatively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups. A unique exosomal miRNAs profile was identified in OSA-EXOS group compared to the NC-EXOS group, in which 28 miRNAs were regulated and several KEGG and GO pathways were identified. CONCLUSIONS: The results of this study show a hypothesis that plasma-derived exosomes from severe OSA patients promote pyroptosis and increased expression of inflammatory factors in vivo and in vitro, and lead to impaired cognitive function in mice, suggesting that OSA-EXOS can mediate CI through pyroptosis of hippocampal neurons. In addition, exosome cargo from OSA-EXOS showed a unique miRNAs profile compared to NC-EXOS, suggesting that plasma exosome associated miRNAs may reflect the differential profile of OSA related diseases, such as CI.

11.
Arterioscler Thromb Vasc Biol ; 43(6): 995-1014, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37021573

RESUMEN

BACKGROUND: Insufficient or disrupted sleep increases the risk of cardiovascular disease, including atherosclerosis. However, we know little about the molecular mechanisms by which sleep modulates atherogenesis. This study aimed to explore the potential role of circulating exosomes in endothelial inflammation and atherogenesis under sleep deprivation status and the molecular mechanisms involved. METHODS: Circulating exosomes were isolated from the plasma of volunteers with or without sleep deprivation and mice subjected to 12-week sleep deprivation or control littermates. miRNA array was performed to determine changes in miRNA expression in circulating exosomes. RESULTS: Although the total circulating exosome levels did not change significantly, the isolated plasma exosomes from sleep-deprived mice or human were a potent inducer of endothelial inflammation and atherogenesis. Through profiling and functional analysis of the global microRNA in the exosomes, we found miR-182-5p is a key exosomal cargo that mediates the proinflammatory effects of exosomes by upregulation of MYD88 (myeloid differentiation factor 88) and activation of NF-ĸB (nuclear factor kappa-B)/NLRP3 pathway in endothelial cells. Moreover, sleep deprivation or the reduction of melatonin directly decreased the synthesis of miR-182-5p and led to the accumulation of reactive oxygen species in small intestinal epithelium. CONCLUSIONS: The findings illustrate an important role for circulating exosomes in distant communications, suggesting a new mechanism underlying the link between sleep disorder and cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Exosomas , MicroARNs , Humanos , Animales , Ratones , Células Endoteliales/metabolismo , Privación de Sueño/complicaciones , Privación de Sueño/genética , Privación de Sueño/metabolismo , Enfermedades Cardiovasculares/metabolismo , MicroARNs/metabolismo , Exosomas/genética , Exosomas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo
12.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 132-138, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814223

RESUMEN

We investigated the influence of 17ß-estradiol (17ß-E2) on cartilage extracellular matrix (ECM) homeostasis in postmenopausal women. We focused on the roles of estrogen receptors (ESR) and SOX6 in 17ß-E2-mediated stimulation of ECM metabolism during chondrocyte (CH) degeneration. We compared the expression of anabolic genes (collagen II and aggrecan) and catabolic genes (MMPs and TIMPs) in IL-1ß-induced CH degeneration in vitro, with and without 17ß-E2 supplementation. We separately silenced the SOX6, ESR1, and ESR2 genes in CHs to determine their impact on 17ß-E2 treatment. Additionally, we used Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and luciferase assays to investigate protein-DNA interactions within ESR2 and SOX6-promoter complexes. After three days of IL-1ß treatment, ESR1/2, SOX6, collagen II, aggrecan, and TIMP1/3 were decreased, while MMP3/9/13 were increased. The addition of 17ß-E2 partially reversed these effects, but silencing SOX6, ESR1, or ESR2 weakened the protective effects of 17ß-E2. Silencing ESR2, but not ESR1, abolished the upregulation of SOX6 induced by 17ß-E2. ESR2 was found to bind the SOX6 promoter and regulate SOX6 expression. 17ß-E2 upregulates SOX6 through ESR2 mediation, and the synergistic effect of 17ß-E2 and ESR2 on SOX6 balances ECM metabolism in CHs.


Asunto(s)
Condrocitos , Estradiol , Receptor beta de Estrógeno , Matriz Extracelular , Interleucina-1beta , Factores de Transcripción SOXD , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Estradiol/farmacología , Humanos , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Femenino , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Factores de Transcripción SOXD/metabolismo , Factores de Transcripción SOXD/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Regiones Promotoras Genéticas/genética , Células Cultivadas
13.
Acta Pharmacol Sin ; 45(7): 1337-1348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38351317

RESUMEN

Transforming growth factor-ß (TGF-ß) signaling is initiated by activation of transmembrane TGF-ß receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-ß signaling pathways leads to pathological conditions. TGF-ß signaling is regulated at different levels along the pathways and begins with the liberation of TGF-ß ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-ß isoforms, enabling precise control of TGF-ß signals. In addition, the cell surface compartments used to release active TGF-ß are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Ligandos , Animales , Factor de Crecimiento Transformador beta/metabolismo
14.
Environ Res ; 252(Pt 2): 118943, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631471

RESUMEN

Biogenic manganese oxides (BioMnOx) have attracted considerable attention as active oxidants, adsorbents, and catalysts. However, characteristics and mechanisms of nitrification-denitrification in biological redox reactions mediated by different concentrations of BioMnOx are still unclear. Fate of nutrients (e.g., NH4+-N, TP, NO3--N) and COD were investigated through different concentrations of BioMnOx produced by Mn(II) in the moving bed biofilm reactor (MBBR). 34% and 89.2%, 37.8% and 89.8%, 57.3% and 88.9%, and 62.1% and 90.4% of TN and COD by MBBR were synchronously removed in four phases, respectively. The result suggested that Mn(II) significantly improved the performance of simultaneous nitrification and denitrification (SND) and TP removal based on manganese (Mn) redox cycling. Characteristics of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and electron transfer system activity (ETSA) were discussed, demonstrating that ROS accumulation reduced the ETSA and GSH-Px activities when Mn(II) concentration increased. Extracellular polymeric substance (EPS) function and metabolic pathway of Mn(II) were explored. Furthermore, effect of cellular components on denitrification was evaluated including BioMnOx performances, indicating that Mn(II) promoted the non-enzymatic action of cell fragments. Finally, mechanism of nitrification and denitrification, denitrifying phosphorus and Mn removal was further elucidated through X-ray photoelectron spectroscopy (XPS), high throughput sequencing, and fourier transform infrared reflection (FTIR). This results can bringing new vision for controlling nutrient pollution in redox process of Mn(II).


Asunto(s)
Compuestos de Manganeso , Nitrógeno , Óxidos , Fósforo , Compuestos de Manganeso/química , Compuestos de Manganeso/metabolismo , Fósforo/metabolismo , Nitrógeno/metabolismo , Óxidos/química , Manganeso/análisis , Reactores Biológicos , Desnitrificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Nitrificación , Eliminación de Residuos Líquidos/métodos
15.
BMC Urol ; 24(1): 38, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347470

RESUMEN

BACKGROUND: Prostatic fibrosis, characterized by the accumulation of myofibroblasts and collagen deposition, is closely associated with LUTS and may lead to mechanical obstruction of the urethra. Additionally, Metabolic Syndrome (MetS), characterized by central obesity, high blood sugar, lipid metabolism disorders, and hypertension, is increasingly recognized as a proinflammatory condition linked to prostate inflammation. METHODS: Clinical data from 108 subjects who underwent transurethral resection of the prostate or bipolar plasmakinetic enucleation of the prostate were prospectively collected between June 2021 and August 2022. Patients were divided in two groups according to whether or not they had a diagnosis of MetS. Specimens were stained with Masson trichrome and the periurethral prostatic fibrosis extent was evaluated using quantitative morphometry. RESULTS: Forty-three patients (39.8%) were diagnosed with MetS. Patients with MetS showed a significantly greater extent of prostatic fibrosis than the others (68.1 ± 17.1% vs. 42.5 ± 18.2%, P < 0.001), and there was a positive correlation between the number of positive MetS parameters and the extent of prostatic fibrosis (R2 = 0.4436, P < 0.001). Multivariate regression analysis revealed that central obesity (B = 2.941, 95% confidence interval, 1.700-3.283), elevated fasting glucose (B = 1.036, 95% confidence interval, 0.293-1.780), reduced HDL cholesterol (B = 0.910, 95% confidence interval, 0.183-1.636) and elevated triglycerides (B = 1.666, 95% confidence interval, 0.824-2.508) were positively correlated to prostatic fibrosis. Elevated blood pressure, however, was unrelated to prostatic fibrosis (B = 0.009, 95% confidence interval, -0.664-0.683). CONCLUSIONS: The present findings suggest that prostatic fibrosis is positively correlated with MetS and its components including central obesity, elevated fasting glucose, reduced high density lipoprotein cholesterol and elevated triglycerides.


Asunto(s)
Síndrome Metabólico , Hiperplasia Prostática , Resección Transuretral de la Próstata , Masculino , Humanos , Próstata/patología , Síndrome Metabólico/complicaciones , Estudios Prospectivos , Hiperplasia Prostática/cirugía , Obesidad Abdominal/complicaciones , Obesidad Abdominal/patología , Obesidad Abdominal/cirugía , Fibrosis , Triglicéridos , Glucosa
16.
Curr Microbiol ; 81(2): 54, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189839

RESUMEN

An endophytic bacterium Paenibacillus polymyxa DS-R5 which can effectively inhibit the growth of pathogenic fungi was isolated from Salvia miltiorrhiza in our previous study. By using hydrochloric acid precipitation, methanol extraction, silica gel column isolation, dextran gel chromatography column, and HPLC, 3 compounds with antifungal activity were isolated. To further improve the production of antifungal compounds produced by this strain, fermentation medium was optimized using one-factor-at-a-time, Plackett-Burman design, and Box-Behnken design experiments. Through statistical optimization, the optimal medium composition was determined to be as follows: 14.7 g/l sucrose, 20.0 g/l soluble starch, 7.0 g/l corn steep liquor, 10.0 g/l (NH4)2SO4, and 0.7 g/l KH2PO4. In this optimized medium, the highest titer of antifungal compounds reached 3452 U/ml, which was 123% higher than that in the initial medium. In addition, in order to guide scale-up for production, logistic and Luedeking-Piret equations were proposed to predict the cell growth and antifungal compounds production. The fermentation kinetics and empirical equations of the coefficients (X0, Xm, µm, α, and ß) for the two models were reported, which will aid the design and optimization of industrial processes. The degrees of fit between calculated values of the model and the experimental data were 0.989 and 0.973, respectively. The results show that the cell growth and product synthesis models established in this study may better reflect the dynamic process of antifungal compounds production and provide a theoretical basis for further optimization and on-line monitoring of the fermentation process.


Asunto(s)
Paenibacillus polymyxa , Salvia miltiorrhiza , Antifúngicos/farmacología , Fermentación , Líquido Amniótico
17.
J Appl Clin Med Phys ; 25(1): e14211, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992226

RESUMEN

BACKGROUND: The location and morphology of the liver are significantly affected by respiratory motion. Therefore, delineating the gross target volume (GTV) based on 4D medical images is more accurate than regular 3D-CT with contrast. However, the 4D method is also more time-consuming and laborious. This study proposes a deep learning (DL) framework based on 4D-CT that can achieve automatic delineation of internal GTV. METHODS: The proposed network consists of two encoding paths, one for feature extraction of adjacent slices (spatial slices) in a specific 3D-CT sequence, and one for feature extraction of slices at the same location in three adjacent phase 3D-CT sequences (temporal slices), a feature fusion module based on an attention mechanism was proposed for fusing the temporal and spatial features. Twenty-six patients' 4D-CT, each consisting of 10 respiratory phases, were used as the dataset. The Hausdorff distance (HD95), Dice similarity coefficient (DSC), and volume difference (VD) between the manual and predicted tumor contour were computed to evaluate the model's segmentation accuracy. RESULTS: The predicted GTVs and IGTVs were compared quantitatively and visually with the ground truth. For the test dataset, the proposed method achieved a mean DSC of 0.869 ± 0.089 and an HD95 of 5.14 ± 3.34 mm for all GTVs, with under-segmented GTVs on some CT slices being compensated by GTVs on other slices, resulting in better agreement between the predicted IGTVs and the ground truth, with a mean DSC of 0.882 ± 0.085 and an HD95 of 4.88 ± 2.84 mm. The best GTV results were generally observed at the end-inspiration stage. CONCLUSIONS: Our proposed DL framework for tumor segmentation on 4D-CT datasets shows promise for fully automated delineation in the future. The promising results of this work provide impetus for its integration into the 4DCT treatment planning workflow to improve hepatocellular carcinoma radiotherapy.


Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/patología , Tomografía Computarizada Cuatridimensional/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patología , Carga Tumoral
18.
Telemed J E Health ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38752869

RESUMEN

Introduction: To examine telehealth use in chronic care management and disparity reduction among the aging population. Methods: This longitudinal cohort study compared the changes in chronic care quality measures among patients with and without telehealth visits during the COVID-19 pandemic relative to patients in the previous years and by patient sociodemographic subgroup. Participants were Medicare fee-for-service beneficiaries 65 years or older from an Accountable Care Organization in the Midwest United States. Three utilization-based measures included having 2+ A1C tests, breast cancer screening, and depression screening. Three outcome-based measures included A1C control, blood pressure control, and depression diagnosis. Results: During the study period, the pandemic cohort experienced 5-17 percentage points' decrease in utilization-based measures (e.g., 2+ A1C tests 63.9% vs. 51.1%; OR [95% confidence intervals] = 0.35 [0.34-0.36]) from baseline relative to the control cohort. The outcome-based measures also significantly decreased but at smaller magnitudes (3-5 percentage points). About 51.5% patients had at least one telehealth visit. The utilization-based measures for these patients were significantly higher than those without any telehealth visit (e.g., 2+ A1C 57.1% vs. 51.1%, p < 0.01). However, the outcome-based measures were comparable. Patients from historically underserved groups had a larger decline in health care outcomes than their counterparts. Among patient with at least one telehealth visit, these disparities were no longer significant. Discussions: Telehealth was associated with less negative impact of the pandemic and better performance in chronic care management, but more for utilization-based measures and less for outcome-based measures. Telehealth was also associated with less disparities in care outcomes.

19.
Chin Med Sci J ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769053

RESUMEN

Objectives Renal replacement therapy (RRT) is increasingly adopted for critically ill patients diagnosed with acute kidney injury, but the optimal time for initiation remains unclear and prognosis is uncertain, leading to medical complexity, ethical conflicts, and decision dilemmas in intensive care unit (ICU) settings. This study aimed to develop a decision aid (DA) for family surrogate of critically ill patients to support their engagement in shared decision-making process with clinicians. Methods Development of DA employed a systematic process with user-centered design (UCD) principle, which included: (i) competitive analysis: searched, screened, and assessed the existing DAs to gather insights for design strategies, developmental techniques, and functionalities; (ii) user needs assessment: interviewed family surrogates to explore target user group's decision-making experience and identify their unmet needs; (iii) evidence syntheses: integrate latest clinical evidence and pertinent information to inform the content development of DA.Results The competitive analysis included 16 relevant DAs, from which we derived valuable insights from existing resources. User decision needs were explored among a cohort of 15 family surrogates, revealing four thematic issues in decision-making, including stuck into dilemmas, sense of uncertainty, limited capacity, and delayed decision confirmation. A total of 27 articles were included for evidence syntheses. Relevant decision-making knowledge on disease and treatment, as delineated in the literature sourced from decision support system or clinical guidelines, were formatted as the foundational knowledge base. Twenty-one items of evidence were extracted and integrated into the content panels of benefits and risks of RRT, possible outcomes, and reasons to choose. The DA was drafted into a web-based phototype using the elements of UCD. This platform could guide users make preparation of decision-making through a sequential four-step progress: identifying treatment options, weighing the benefits and risks, clarifying personal preferences and values, and formulating a schedule for formal shared decision-making with clinicians.Conclusions We developed a rapid prototype of DA tailored for family surrogate decision makers of critically ill patients in need of RRT in ICU setting. Future studies are needed to evaluate its usability, feasibility, and clinical effects of this intervene.

20.
Int Wound J ; 21(4): e14834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38650426

RESUMEN

A meta-analysis was conducted comprehensively to investigate the impact of evidence-based nursing (EBN) interventions on pressure injury (PI) in the intensive care unit (ICU) patients. Computer searches were performed, from databases inception to November 2023, in Wanfang, PubMed, China National Knowledge Infrastructure, Google Scholar, Embase, and Cochrane Library for randomized controlled trials (RCTs) on the application of EBN interventions in ICU patients. Two independent researchers conducted screenings of the literature, extracted data, and carried out quality evaluations. Stata 17.0 software was employed for data analysis. Overall, 25 RCTs, involving 2494 ICU patients, were included. It was found that compared to conventional care methods, the implementation of EBN interventions in ICU patients markedly decreased the occurrence of PI (odds ratio [OR]: 0.22, 95% confidence interval [CI]: 0.17-0.30, p < 0.001), delayed the onset time of pressure ulcers (standardized mean difference [SMD]: -1.61, 95% CI: -2.00 to -1.22, p < 0.001), and also improved nursing satisfaction (OR: 1.18, 95% CI: 1.14-1.23, p < 0.001). Our findings suggest the implementation of EBN interventions in the care of PI in ICU patients is highly valuable, can reduce the occurrence of PI, can delay the time of appearance, and is associated with relatively higher nursing satisfaction, making it worthy of promotion.


Asunto(s)
Enfermería Basada en la Evidencia , Unidades de Cuidados Intensivos , Úlcera por Presión , Úlcera por Presión/enfermería , Úlcera por Presión/prevención & control , Humanos , Enfermería Basada en la Evidencia/métodos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA